Back to Article
mlr3
Download Source

Modeling of relative Yield, P-Uptake and P-Balance

Author

Lukas Graz

Published

February 13, 2025

In [1]:
RES <- readRDS("data/RES.rds")
D <- RES$D
lgr::get_logger("mlr3")$set_threshold("warn")
# d <- RES$data

Setup

In [2]:
Benchmark helper function
library(mlr3verse, quietly = TRUE)

mse <- msrs(c("regr.mse"))

if (!interactive())
  lgr::get_logger("mlr3")$set_threshold("warn")

get_benchi_table <- function(tasks, nfolds = 5, resamplings = NULL) {
  # TODO activate xgboost and ranger for == uncomment things below
  set.seed(123)
  learners <- lrns(c("regr.featureless", "regr.lm"
    # , "regr.xgboost", "regr.ranger"
    ))
  # learners$regr.xgboost$param_set$set_values(
  #   eta = 0.04, 
  #   nrounds = 300, 
  #   max_depth = 2
  # )

  benchi <- xfun::cache_rds({
    benchmark(benchmark_grid(
      tasks, 
      learners, 
      if(is.null(resamplings)) rsmp("cv", folds = nfolds) else resamplings
    ))
  }, 
  file = "benchmark.rds", 
  dir = "cache/",
  hash = list(tasks, nfolds)
  )
  
  res <- tidyr::pivot_wider(benchi$aggregate(mse), 
    id_cols = task_id,
    names_from = learner_id,
    values_from = regr.mse
  ) |> as.data.frame()
  
  rownames(res) <- res$task_id
  res <- res[, -1]
  colnames(res) <- gsub("regr.", "", colnames(res))
  stopifnot(any(colnames(res) == "featureless"))
  res <- 1 - res / res$featureless
  res[, -1, drop = FALSE] |> round(3)
}

Testing prediction quality using

  • Linear models
  • Random forests (default parameters)
  • XGBoost (with parameter tuning)

Weather Variables:

In [3]:
Code
Weather_vars <- c(
  "anavg_temp", "ansum_prec",
  "juvdev_prec", "juvdev_sun",
  "ansum_sun", "juvdev_temp"
)

# set NA's to 0 but include a column to indicate that
NA_weather <- is.na(D$juvdev_sun)
D[NA_weather, Weather_vars] <- 0
D$NA_weather <- NA_weather
Weather_vars <- c(Weather_vars, "NA_weather")

stopifnot(all(Weather_vars %in% names(D)))
Weather_vars
[1] "anavg_temp"  "ansum_prec"  "juvdev_prec" "juvdev_sun"  "ansum_sun"  
[6] "juvdev_temp" "NA_weather" 
In [4]:
Code
P_var_sets <- list(
  onlyweather = NULL,
  k = "k",
  PS = "PS_log",
  kPS = c("PS_log", "k", "kPS_log"),
  AAE10 = "P_AAE10_log",
  CO2 = "P_CO2_log",
  AAE10_CO2 = c("P_AAE10_log", "P_CO2_log", "P_AAE10_CO2_loglog"),
  AAE10_CO2_kPS = c("P_AAE10_log", "P_CO2_log", "PS_log", "k", "kPS_log"),
  CO2_kPS = c("P_CO2_log", "PS_log", "k", "kPS_log")
)
Earth_vars <- c(
  "soil_0_20_clay", "soil_0_20_pH_H2O", "soil_0_20_Corg", "soil_0_20_silt"
)
In [5]:
Code
Y_vars_yield <- c("Ymain_norm", "Ymain_rel", "annual_P_uptake", "annual_P_balance")

Y_vars_earth <- c("PS_log", "k", "kPS_log", "P_AAE10_log", "P_CO2_log")

impute NA’s for Earth variables. impute value with the mean of Site X block

In [6]:
Code
# xtabs(~is.na(D$soil_0_20_silt) + Site + block, D)
for (var in Earth_vars) {
  D[[var]] <- ave(D[[var]], D$Site, D$block, FUN = \(x) ifelse(is.na(x), mean(x, na.rm = TRUE), x))
}

remove Cadenazzoo since too many crucial data missing

In [7]:
Code
D <- D[D$site != "CAD", ]
D$Site <- droplevels(D$Site)

Now check NA’s

In [8]:
Code
sapply(D[, unique(c(Y_vars_yield, Y_vars_earth, Weather_vars, unlist(P_var_sets), Earth_vars))], 
  \(x) sum(is.na(x)|is.nan(x))) |> cbind()
                   [,1]
Ymain_norm           23
Ymain_rel           117
annual_P_uptake      70
annual_P_balance     55
PS_log                0
k                     0
kPS_log               0
P_AAE10_log           0
P_CO2_log             0
anavg_temp            0
ansum_prec            0
juvdev_prec           0
juvdev_sun            0
ansum_sun             0
juvdev_temp           0
NA_weather            0
P_AAE10_CO2_loglog    0
soil_0_20_clay        0
soil_0_20_pH_H2O      0
soil_0_20_Corg        0
soil_0_20_silt        0

Predicting Yield variables (with/without Weather data) with Earth-dynamics

With Weather data

In [9]:
Code
P_var_sets
$onlyweather
NULL

$k
[1] "k"

$PS
[1] "PS_log"

$kPS
[1] "PS_log"  "k"       "kPS_log"

$AAE10
[1] "P_AAE10_log"

$CO2
[1] "P_CO2_log"

$AAE10_CO2
[1] "P_AAE10_log"        "P_CO2_log"          "P_AAE10_CO2_loglog"

$AAE10_CO2_kPS
[1] "P_AAE10_log" "P_CO2_log"   "PS_log"      "k"           "kPS_log"    

$CO2_kPS
[1] "P_CO2_log" "PS_log"    "k"         "kPS_log"  

Algorithm learns to predict location from weather since we do not do stratified cross-validation (leaving out locations).

In [10]:
Code
Tables_yield_weather <- list()
for(yvar in Y_vars_yield){
  ind <- complete.cases(D[,unique(c(yvar ,Weather_vars, unlist(P_var_sets)))])

  mytsks <- list()
  for (nam in names(P_var_sets)) {
    mytsk <- as_task_regr(
      D[ind, c(yvar, Weather_vars, P_var_sets[[nam]])],
      target = yvar,
      id = nam)
    mytsks[[nam]] <- mytsk
  }
  Tables_yield_weather[[yvar]] <- get_benchi_table(mytsks)
}

Tables_yield_weather
$Ymain_norm
                  lm
onlyweather   -0.018
k              0.023
PS             0.204
kPS            0.203
AAE10          0.147
CO2            0.231
AAE10_CO2      0.235
AAE10_CO2_kPS  0.220
CO2_kPS        0.246

$Ymain_rel
                 lm
onlyweather   0.132
k             0.105
PS            0.184
kPS           0.189
AAE10         0.222
CO2           0.210
AAE10_CO2     0.245
AAE10_CO2_kPS 0.238
CO2_kPS       0.157

$annual_P_uptake
                 lm
onlyweather   0.391
k             0.353
PS            0.446
kPS           0.415
AAE10         0.496
CO2           0.463
AAE10_CO2     0.491
AAE10_CO2_kPS 0.463
CO2_kPS       0.449

$annual_P_balance
                 lm
onlyweather   0.113
k             0.077
PS            0.627
kPS           0.632
AAE10         0.432
CO2           0.594
AAE10_CO2     0.591
AAE10_CO2_kPS 0.652
CO2_kPS       0.644
In [11]:
Code
tmp <- do.call(cbind, lapply(Tables_yield_weather, \(x) x$lm)); 
rownames(tmp) <- rownames(Tables_yield_weather[[1]])
(Tables_yield_weather_lm <- tmp)
              Ymain_norm Ymain_rel annual_P_uptake annual_P_balance
onlyweather       -0.018     0.132           0.391            0.113
k                  0.023     0.105           0.353            0.077
PS                 0.204     0.184           0.446            0.627
kPS                0.203     0.189           0.415            0.632
AAE10              0.147     0.222           0.496            0.432
CO2                0.231     0.210           0.463            0.594
AAE10_CO2          0.235     0.245           0.491            0.591
AAE10_CO2_kPS      0.220     0.238           0.463            0.652
CO2_kPS            0.246     0.157           0.449            0.644

Without Weather data

In [12]:
Code
P_var_sets_noweather <- P_var_sets[-1]

Tables_yield <- list()
for(yvar in Y_vars_yield){
  ind <- complete.cases(D[,unique(c(yvar, unlist(P_var_sets_noweather)))])

  mytsks <- list()
  for (nam in names(P_var_sets_noweather)) {
    mytsk <- as_task_regr(
      D[ind,
        c(yvar, P_var_sets_noweather[[nam]]
        # ,"Site"
        )],
      target = yvar,
      id = nam)
    # mytsk$set_col_roles("Site", "group")
    mytsks[[nam]] <- mytsk
  }
  Tables_yield[[yvar]] <- get_benchi_table(mytsks)
}

Tables_yield
$Ymain_norm
                 lm
k             0.021
PS            0.223
kPS           0.215
AAE10         0.109
CO2           0.228
AAE10_CO2     0.232
AAE10_CO2_kPS 0.233
CO2_kPS       0.232

$Ymain_rel
                  lm
k             -0.009
PS             0.051
kPS            0.036
AAE10          0.152
CO2            0.105
AAE10_CO2      0.129
AAE10_CO2_kPS  0.139
CO2_kPS        0.094

$annual_P_uptake
                  lm
k             -0.005
PS             0.034
kPS            0.030
AAE10          0.095
CO2            0.075
AAE10_CO2      0.097
AAE10_CO2_kPS  0.049
CO2_kPS        0.046

$annual_P_balance
                 lm
k             0.018
PS            0.553
kPS           0.540
AAE10         0.277
CO2           0.500
AAE10_CO2     0.491
AAE10_CO2_kPS 0.562
CO2_kPS       0.561
In [13]:
Code
tmp <- do.call(cbind, lapply(Tables_yield, \(x) x$lm));
rownames(tmp) <- rownames(Tables_yield[[1]])
(Tables_yield_lm <- tmp)
              Ymain_norm Ymain_rel annual_P_uptake annual_P_balance
k                  0.021    -0.009          -0.005            0.018
PS                 0.223     0.051           0.034            0.553
kPS                0.215     0.036           0.030            0.540
AAE10              0.109     0.152           0.095            0.277
CO2                0.228     0.105           0.075            0.500
AAE10_CO2          0.232     0.129           0.097            0.491
AAE10_CO2_kPS      0.233     0.139           0.049            0.562
CO2_kPS            0.232     0.094           0.046            0.561

xgboost & ranger are no good in this setting since only very few variables available

Predicting Earth-dynamics via soil variables (with/without Treatment)

In [14]:
Code
Earth_vars
[1] "soil_0_20_clay"   "soil_0_20_pH_H2O" "soil_0_20_Corg"   "soil_0_20_silt"  
Code
Y_vars_earth
[1] "PS_log"      "k"           "kPS_log"     "P_AAE10_log" "P_CO2_log"  
In [15]:
Code
D$is.trt0 <- D$Treatment == "P0"
D$is.trt1 <- D$Treatment == "P100"

mytsks_treatment <- list()
mytsks_notreatment <- list()
for(yvar in Y_vars_earth){
  ind <- complete.cases(D[,unique(c(yvar, unlist(P_var_sets_noweather)))])

    mytsk <- as_task_regr(
      D[ind, c(yvar, Earth_vars, "is.trt1", "is.trt0"
        # ,"Site"
        )],
      target = yvar,
      id = yvar)
    # mytsk$set_col_roles("Site", "group")
    mytsks_treatment[[yvar]] <- mytsk

    mytsk <- as_task_regr(
      D[ind, c(yvar, Earth_vars
        # ,"Site"
        )],
      target = yvar,
      id = yvar)
    # mytsk$set_col_roles("Site", "group")
    mytsks_notreatment[[yvar]] <- mytsk    
}

Tables_earth_treatment <- get_benchi_table(mytsks_treatment)
Tables_earth_notreatment <- get_benchi_table(mytsks_notreatment)
In [16]:
Tables_earth_treatment
               lm
PS_log      0.885
k           0.328
kPS_log     0.752
P_AAE10_log 0.824
P_CO2_log   0.792
Tables_earth_notreatment
               lm
PS_log      0.042
k           0.267
kPS_log     0.023
P_AAE10_log 0.365
P_CO2_log   0.025
In [17]:
Code
tmp <- rbind(
  "soil + treatment" = Tables_earth_treatment[["lm"]],
  "only soil" = Tables_earth_notreatment[["lm"]]
)
colnames(tmp) <- rownames(Tables_earth_treatment)
(Tables_earth_lm <- tmp)
                 PS_log     k kPS_log P_AAE10_log P_CO2_log
soil + treatment  0.885 0.328   0.752       0.824     0.792
only soil         0.042 0.267   0.023       0.365     0.025
In [18]:
Code
saveRDS(list(
  Tables_yield = Tables_yield,
  Tables_yield_weather = Tables_yield_weather,
  Tables_earth_treatment = Tables_earth_treatment,
  Tables_earth_notreatment = Tables_earth_notreatment,
  Tables_yield_lm = Tables_yield_lm,
  Tables_yield_weather_lm = Tables_yield_weather_lm,
  Tables_earth_lm = Tables_earth_lm
), "cache/benchmark-tables.rds")

In [19]:
Code
cor(D$annual_P_balance, D$PS) # 0.54389
[1] NA
Code
cor(D$fert_P_tot, D$PS) # 0.48236
[1] 0.6449276
Code
cor(D$annual_P_uptake, D$PS) # 0.070678
[1] NA

We did manage to have high predictive power for weather. This could also be due to our regression models recovering location&year from it and hence still overfitting on the test set.

Without Weather data we only managed for annual balance to get some predictive power (30%). Since we the balance is uptake - fert_P, this means that we mostly predicted fert_P. Interestingly PS is best to predict this quantity

Legacy Code

In [20]:
XGBoost - Parameter Tuning

# Get parameter estimates for XGBoost
t <- as_task_regr(
  subset(D[complete.cases(D$annual_P_balance),], 
    select = c("annual_P_balance", P_var_sets$AAE10_CO2_kPS#, Weather_vars
    )),
  target = "annual_P_balance"
)

l <- lrn("regr.xgboost",
  nrounds = 500  # More iterations due to lower learning rate
)

# Create search space
ps <- ps(
  max_depth = p_int(2, 4),
  eta = p_dbl(0.001, 0.3, tags = "logscale")
)

# Setup tuning
instance <- ti(
  task = t,
  learner = l,
  resampling = rsmp("cv", folds = 3),
  measure = msr("regr.mse"),
  terminator = trm("none"),
  search_space = ps
)

# Grid search
tuner <- mlr3tuning::tnr("grid_search")
tuner$optimize(instance)
instance$result

Ymain_rel max_depth eta learner_param_vals x_domain regr.mse 1: 2 0.067444 <list[5]> <list[2]> 177.18

P uptake max_depth eta learner_param_vals x_domain regr.mse 1: 2 0.034222 <list[5]> <list[2]> 137.41

annual_P_balance max_depth eta learner_param_vals x_domain regr.mse 1: 2 0.034222 <list[5]> <list[2]> 145.21

In [21]:
Code
# nlme.coef$kPS_log <- nlme.coef$k * nlme.coef$PS
# 
# 
# nlme.coef.mrg <- merge(nlme.coef,allP[allP$year>=2017,],by = "uid")
# # add log-transformed versions
# D$kPS_log <- log(D$kPS_log)
# D$PS_log <- log(D$PS)
# D$soil_0_20_P_AAE10_log <- log(D$soil_0_20_P_AAE10)
# D$soil_0_20_P_CO2_log <- log(D$soil_0_20_P_CO2)
# 
# D$k



subset(D, select = c("Ymain_rel", P_var_sets$AAE10_CO2_kPS, Weather_vars))
    Ymain_rel P_AAE10_log   P_CO2_log     PS_log          k   kPS_log
55      72.33   1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
56      92.91   1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
57      65.60   1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
58         NA   1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
59         NA   1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
60         NA   1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
61      84.81   1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
62         NA   1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
63     106.32   1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
64      69.17   1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
65         NA   1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
66      84.97   1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
67      82.00   1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
68         NA   1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
69      89.08   0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
70      81.01   0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
71         NA   0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
72      66.00   0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
73         NA   0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
74      74.25   0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
75         NA   0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
76      79.31   1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
77         NA   1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
78      74.44   1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
79      92.33   1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
80      80.85   1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
81         NA   1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
82         NA   1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
83     109.20   3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
84         NA   3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
85         NA   3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
86         NA   3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
87      91.61   3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
88      63.16   3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
89      91.33   3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
90         NA   2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
91         NA   2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
92         NA   2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
93      68.61   2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
94      73.44   2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
95      78.32   2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
96     101.92   2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
97      80.26   2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
98     107.85   2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
99         NA   2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
100        NA   2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
101     72.56   2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
102     95.57   2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
103        NA   2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
104        NA   2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
105     52.11   2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
106     69.74   2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
107     93.51   2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
108        NA   2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
109        NA   2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
110     72.61   2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
111     90.42   4.2017031  0.76546784 -0.9083699 0.23219455 -2.368550
112        NA   4.2017031  0.76546784 -0.9083699 0.23219455 -2.368550
113        NA   4.2017031  0.76546784 -0.9083699 0.23219455 -2.368550
114     94.15   4.2017031  0.76546784 -0.9083699 0.23219455 -2.368550
115     90.11   4.2017031  0.76546784 -0.9083699 0.23219455 -2.368550
116     62.97   4.2017031  0.76546784 -0.9083699 0.23219455 -2.368550
117        NA   4.2017031  0.76546784 -0.9083699 0.23219455 -2.368550
118     85.44   3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
119     97.94   3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
120        NA   3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
121    104.41   3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
122     81.58   3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
123        NA   3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
124        NA   3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
125     83.33   3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
126        NA   3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
127        NA   3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
128     76.88   3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
129     47.89   3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
130        NA   3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
131     87.03   3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
132    125.95   2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
133     83.27   2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
134        NA   2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
135        NA   2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
136     66.48   2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
137        NA   2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
138    132.89   2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
139        NA   3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
140     75.56   3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
141        NA   3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
142    117.88   3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
143     65.52   3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
144        NA   3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
145     91.54   3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
146        NA   3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
147     65.33   3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
148     77.26   3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
149        NA   3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
150        NA   3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
151    133.86   3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
152     93.11   3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
153        NA   2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
154     89.10   2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
155     54.11   2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
156     86.78   2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
157        NA   2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
158        NA   2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
159    126.90   2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
160        NA   3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
161     87.36   3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
162        NA   3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
163    109.78   3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
164    145.89   3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
165        NA   3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
166     90.60   3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
167        NA   3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
168     92.78   3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
169     79.12   3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
170     94.92   3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
171    139.72   3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
172        NA   3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
173        NA   3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
174     77.97   3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
175        NA   3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
176     92.11   3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
177    138.29   3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
178        NA   3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
179        NA   3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
180     87.56   3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
181     96.55   3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
182     90.00   3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
183        NA   3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
184    137.97   3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
185        NA   3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
186     96.80   3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
187        NA   3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
188    134.81   3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
189     58.00   3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
190        NA   3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
191        NA   3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
192     84.67   3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
193     88.53   3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
194        NA   3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
195        NA   3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
196        NA   3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
197        NA   3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
198    117.78   3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
199    132.12   3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
200     97.18   3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
201     92.53   3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
202        NA   3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
203        NA   3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
204        NA   3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
205     98.28   3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
206     91.44   3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
207    137.66   3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
208     90.98   3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
209        NA   3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
210        NA   3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
211        NA   3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
212     92.34   3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
213    132.91   3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
214     94.74   3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
215    108.89   3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
216        NA   2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
217        NA   2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
218     98.64   2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
219     94.74   2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
220     98.67   2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
221     90.23   2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
222    108.37   2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
223     82.03   2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
224    115.94   2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
225     89.10   2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
226        NA   2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
227        NA   2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
228     81.61   2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
229     83.91   2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
230     92.86   3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
231     83.28   3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
232    113.04   3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
233     93.87   3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
234        NA   3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
235        NA   3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
236    104.22   3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
237    110.14   2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
238     96.24   2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
239    104.70   2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
240        NA   2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
241     97.49   2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
242     91.95   2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
243        NA   2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
244        NA   3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
245        NA   3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
246     92.15   3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
247    107.57   3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
248     98.85   3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
249    100.00   3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
250     86.47   3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
251     96.38   3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
252    140.42   3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
253        NA   3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
254    100.00   3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
255        NA   3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
256     92.53   3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
257     94.92   3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
258        NA   3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
259     97.18   3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
260     96.34   3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
261     95.02   3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
262        NA   3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
263    126.25   3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
264    113.27   3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
265        NA   3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
266    104.28   3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
267        NA   3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
268     94.25   3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
269    102.07   3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
270    119.16   3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
271     99.28   3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
272    108.69   3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
273    130.60   3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
274        NA   3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
275     93.30   3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
276     96.66   3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
277    100.75   3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
278        NA   3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
279        NA   3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
280        NA   3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
281     97.51   3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
282    111.65   3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
283    128.34   3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
284     85.16   3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
285     99.69   3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
286    130.43   3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
287     93.42   3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
288    106.17   3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
289        NA   3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
290     94.44   3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
291        NA   3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
292     88.06   3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
293        NA   4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
294    106.02   4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
295    100.42   4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
296     96.86   4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
297    133.49   4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
298     94.25   4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
299        NA   4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
300        NA   2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
301        NA   2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
302     86.01   2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
303    104.08   2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
304     69.73   2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
305     80.08   2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
306     91.63   2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
307     66.34   3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
308        NA   3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
309        NA   3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
310     67.05   3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
311     61.28   3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
312     94.25   3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
313     81.18   3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
314     98.91   3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
315        NA   3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
316     75.10   3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
317        NA   3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
318    110.97   3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
319    129.31   3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
320     94.92   3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
321     88.90   2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
322        NA   2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
323     64.66   2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
324        NA   2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
325     65.52   2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
326     71.26   2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
327     75.85   2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
328    100.10   4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
329     86.78   4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
330    135.27   4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
331        NA   4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
332        NA   4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
333    114.85   4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
334    106.63   4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
335     99.69   3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
336     97.89   3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
337    145.25   3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
338        NA   3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
339    105.43   3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
340    109.77   3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
341        NA   3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
342        NA   3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
343    108.05   3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
344     88.12   3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
345    129.95   3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
346     97.83   3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
347    108.65   3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
348        NA   3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
349    109.17   3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
350        NA   3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
351     81.61   3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
352    117.23   3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
353    110.24   3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
354    102.63   3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
355        NA   3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
356     89.46   4.3385971  0.07696104 -1.4624073 0.18550740 -3.147068
357    113.99   4.3385971  0.07696104 -1.4624073 0.18550740 -3.147068
358     98.22   4.3385971  0.07696104 -1.4624073 0.18550740 -3.147068
359        NA   4.3385971  0.07696104 -1.4624073 0.18550740 -3.147068
360    106.02   4.3385971  0.07696104 -1.4624073 0.18550740 -3.147068
361    131.88   4.3385971  0.07696104 -1.4624073 0.18550740 -3.147068
362        NA   4.3385971  0.07696104 -1.4624073 0.18550740 -3.147068
363     99.62   4.5174313  0.67803354 -1.2422076 0.13496530 -3.244945
364    103.50   4.5174313  0.67803354 -1.2422076 0.13496530 -3.244945
365        NA   4.5174313  0.67803354 -1.2422076 0.13496530 -3.244945
366    143.00   4.5174313  0.67803354 -1.2422076 0.13496530 -3.244945
367    111.18   4.5174313  0.67803354 -1.2422076 0.13496530 -3.244945
368    113.35   4.5174313  0.67803354 -1.2422076 0.13496530 -3.244945
369        NA   4.5174313  0.67803354 -1.2422076 0.13496530 -3.244945
370        NA   4.2668963  0.11332869 -1.5757798 0.20749743 -3.148416
371     92.89   4.2668963  0.11332869 -1.5757798 0.20749743 -3.148416
372     89.85   4.2668963  0.11332869 -1.5757798 0.20749743 -3.148416
373    114.85   4.2668963  0.11332869 -1.5757798 0.20749743 -3.148416
374    134.86   4.2668963  0.11332869 -1.5757798 0.20749743 -3.148416
375        NA   4.2668963  0.11332869 -1.5757798 0.20749743 -3.148416
376    132.21   4.2668963  0.11332869 -1.5757798 0.20749743 -3.148416
377        NA   4.0656021  0.53649337 -2.1617951 0.28873132 -3.404054
378    128.47   4.0656021  0.53649337 -2.1617951 0.28873132 -3.404054
379    107.89   4.0656021  0.53649337 -2.1617951 0.28873132 -3.404054
380    110.14   4.0656021  0.53649337 -2.1617951 0.28873132 -3.404054
381        NA   4.0656021  0.53649337 -2.1617951 0.28873132 -3.404054
382     81.03   4.0656021  0.53649337 -2.1617951 0.28873132 -3.404054
383    125.60   4.0656021  0.53649337 -2.1617951 0.28873132 -3.404054
    anavg_temp ansum_prec juvdev_prec juvdev_sun ansum_sun juvdev_temp
55        10.1     1035.6        0.23       0.22    1960.0        1.37
56        11.2      752.6       -0.36      -0.02    2105.7        0.40
57        11.3      725.8       -0.38       0.42    2019.7        1.00
58         9.5     1029.7        0.23       0.13    1692.1       -0.34
59        10.7      870.9       -0.35       0.18    1886.0        1.10
60        10.5      993.9       -0.25       0.44    1862.4        1.60
61        10.5      993.9       -0.25       0.44    1862.4        1.60
62        10.5      993.9       -0.25       0.44    1862.4        1.60
63        11.2      752.6       -0.36      -0.02    2105.7        0.40
64        11.3      725.8       -0.38       0.42    2019.7        1.00
65        10.7      870.9       -0.35       0.18    1886.0        1.10
66        10.5      993.9       -0.25       0.44    1862.4        1.60
67        10.1     1035.6        0.23       0.22    1960.0        1.37
68         9.5     1029.7        0.23       0.13    1692.1       -0.34
69        11.2      752.6       -0.36      -0.02    2105.7        0.40
70        10.5      993.9       -0.25       0.44    1862.4        1.60
71        10.5      993.9       -0.25       0.44    1862.4        1.60
72        10.1     1035.6        0.23       0.22    1960.0        1.37
73         9.5     1029.7        0.23       0.13    1692.1       -0.34
74        11.3      725.8       -0.38       0.42    2019.7        1.00
75        10.7      870.9       -0.35       0.18    1886.0        1.10
76        11.2      752.6       -0.36      -0.02    2105.7        0.40
77         9.5     1029.7        0.23       0.13    1692.1       -0.34
78        11.3      725.8       -0.38       0.42    2019.7        1.00
79        10.1     1035.6        0.23       0.22    1960.0        1.37
80        10.5      993.9       -0.25       0.44    1862.4        1.60
81        10.7      870.9       -0.35       0.18    1886.0        1.10
82        10.5      993.9       -0.25       0.44    1862.4        1.60
83        11.2      752.6       -0.36      -0.02    2105.7        0.40
84        10.5      993.9       -0.25       0.44    1862.4        1.60
85        10.7      870.9       -0.35       0.18    1886.0        1.10
86         9.5     1029.7        0.23       0.13    1692.1       -0.34
87        10.5      993.9       -0.25       0.44    1862.4        1.60
88        11.3      725.8       -0.38       0.42    2019.7        1.00
89        10.1     1035.6        0.23       0.22    1960.0        1.37
90        10.7      870.9       -0.35       0.18    1886.0        1.10
91        10.5      993.9       -0.25       0.44    1862.4        1.60
92         9.5     1029.7        0.23       0.13    1692.1       -0.34
93        11.3      725.8       -0.38       0.42    2019.7        1.00
94        10.1     1035.6        0.23       0.22    1960.0        1.37
95        10.5      993.9       -0.25       0.44    1862.4        1.60
96        11.2      752.6       -0.36      -0.02    2105.7        0.40
97        11.3      725.8       -0.38       0.42    2019.7        1.00
98        11.2      752.6       -0.36      -0.02    2105.7        0.40
99        10.5      993.9       -0.25       0.44    1862.4        1.60
100        9.5     1029.7        0.23       0.13    1692.1       -0.34
101       10.1     1035.6        0.23       0.22    1960.0        1.37
102       10.5      993.9       -0.25       0.44    1862.4        1.60
103       10.7      870.9       -0.35       0.18    1886.0        1.10
104        9.5     1029.7        0.23       0.13    1692.1       -0.34
105       10.1     1035.6        0.23       0.22    1960.0        1.37
106       11.3      725.8       -0.38       0.42    2019.7        1.00
107       10.5      993.9       -0.25       0.44    1862.4        1.60
108       10.5      993.9       -0.25       0.44    1862.4        1.60
109       10.7      870.9       -0.35       0.18    1886.0        1.10
110       11.2      752.6       -0.36      -0.02    2105.7        0.40
111       11.2      752.6       -0.36      -0.02    2105.7        0.40
112       10.7      870.9       -0.35       0.18    1886.0        1.10
113       10.5      993.9       -0.25       0.44    1862.4        1.60
114       10.5      993.9       -0.25       0.44    1862.4        1.60
115       10.1     1035.6        0.23       0.22    1960.0        1.37
116       11.3      725.8       -0.38       0.42    2019.7        1.00
117        9.5     1029.7        0.23       0.13    1692.1       -0.34
118       10.1     1035.6        0.23       0.22    1960.0        1.37
119       10.5      993.9       -0.25       0.44    1862.4        1.60
120        9.5     1029.7        0.23       0.13    1692.1       -0.34
121       11.2      752.6       -0.36      -0.02    2105.7        0.40
122       11.3      725.8       -0.38       0.42    2019.7        1.00
123       10.7      870.9       -0.35       0.18    1886.0        1.10
124       10.5      993.9       -0.25       0.44    1862.4        1.60
125       11.2      752.6       -0.36      -0.02    2105.7        0.40
126       10.5      993.9       -0.25       0.44    1862.4        1.60
127        9.5     1029.7        0.23       0.13    1692.1       -0.34
128       11.3      725.8       -0.38       0.42    2019.7        1.00
129       10.1     1035.6        0.23       0.22    1960.0        1.37
130       10.7      870.9       -0.35       0.18    1886.0        1.10
131       10.5      993.9       -0.25       0.44    1862.4        1.60
132       10.2     1063.5       -0.25       0.28    1758.6        1.27
133       11.2     1047.7       -0.08       0.50    2022.8        1.10
134       10.2     1063.5       -0.25       0.28    1758.6        1.27
135        9.3     1390.5        0.52       0.07    1589.4       -0.14
136       10.8     1013.6       -0.45      -0.24    1768.3        0.43
137       10.6      980.7       -0.25       0.35    1890.3        1.24
138        9.9     1076.4       -0.10       0.19    1748.2        1.70
139        9.3     1390.5        0.52       0.07    1589.4       -0.14
140        9.9     1076.4       -0.10       0.19    1748.2        1.70
141       10.6      980.7       -0.25       0.35    1890.3        1.24
142       10.2     1063.5       -0.25       0.28    1758.6        1.27
143       10.8     1013.6       -0.45      -0.24    1768.3        0.43
144       10.2     1063.5       -0.25       0.28    1758.6        1.27
145       11.2     1047.7       -0.08       0.50    2022.8        1.10
146        9.3     1390.5        0.52       0.07    1589.4       -0.14
147       10.8     1013.6       -0.45      -0.24    1768.3        0.43
148       11.2     1047.7       -0.08       0.50    2022.8        1.10
149       10.2     1063.5       -0.25       0.28    1758.6        1.27
150       10.6      980.7       -0.25       0.35    1890.3        1.24
151       10.2     1063.5       -0.25       0.28    1758.6        1.27
152        9.9     1076.4       -0.10       0.19    1748.2        1.70
153       10.6      980.7       -0.25       0.35    1890.3        1.24
154       11.2     1047.7       -0.08       0.50    2022.8        1.10
155        9.9     1076.4       -0.10       0.19    1748.2        1.70
156       10.8     1013.6       -0.45      -0.24    1768.3        0.43
157       10.2     1063.5       -0.25       0.28    1758.6        1.27
158        9.3     1390.5        0.52       0.07    1589.4       -0.14
159       10.2     1063.5       -0.25       0.28    1758.6        1.27
160        9.3     1390.5        0.52       0.07    1589.4       -0.14
161       10.8     1013.6       -0.45      -0.24    1768.3        0.43
162       10.2     1063.5       -0.25       0.28    1758.6        1.27
163        9.9     1076.4       -0.10       0.19    1748.2        1.70
164       10.2     1063.5       -0.25       0.28    1758.6        1.27
165       10.6      980.7       -0.25       0.35    1890.3        1.24
166       11.2     1047.7       -0.08       0.50    2022.8        1.10
167       10.6      980.7       -0.25       0.35    1890.3        1.24
168        9.9     1076.4       -0.10       0.19    1748.2        1.70
169       10.8     1013.6       -0.45      -0.24    1768.3        0.43
170       11.2     1047.7       -0.08       0.50    2022.8        1.10
171       10.2     1063.5       -0.25       0.28    1758.6        1.27
172        9.3     1390.5        0.52       0.07    1589.4       -0.14
173       10.2     1063.5       -0.25       0.28    1758.6        1.27
174       10.8     1013.6       -0.45      -0.24    1768.3        0.43
175       10.6      980.7       -0.25       0.35    1890.3        1.24
176       11.2     1047.7       -0.08       0.50    2022.8        1.10
177       10.2     1063.5       -0.25       0.28    1758.6        1.27
178        9.3     1390.5        0.52       0.07    1589.4       -0.14
179       10.2     1063.5       -0.25       0.28    1758.6        1.27
180        9.9     1076.4       -0.10       0.19    1748.2        1.70
181       10.8     1013.6       -0.45      -0.24    1768.3        0.43
182        9.9     1076.4       -0.10       0.19    1748.2        1.70
183        9.3     1390.5        0.52       0.07    1589.4       -0.14
184       10.2     1063.5       -0.25       0.28    1758.6        1.27
185       10.6      980.7       -0.25       0.35    1890.3        1.24
186       11.2     1047.7       -0.08       0.50    2022.8        1.10
187       10.2     1063.5       -0.25       0.28    1758.6        1.27
188       10.2     1063.5       -0.25       0.28    1758.6        1.27
189        9.9     1076.4       -0.10       0.19    1748.2        1.70
190        9.3     1390.5        0.52       0.07    1589.4       -0.14
191       10.6      980.7       -0.25       0.35    1890.3        1.24
192       10.8     1013.6       -0.45      -0.24    1768.3        0.43
193       11.2     1047.7       -0.08       0.50    2022.8        1.10
194       10.2     1063.5       -0.25       0.28    1758.6        1.27
195       10.6      980.7       -0.25       0.35    1890.3        1.24
196        9.3     1390.5        0.52       0.07    1589.4       -0.14
197       10.2     1063.5       -0.25       0.28    1758.6        1.27
198        9.9     1076.4       -0.10       0.19    1748.2        1.70
199       10.2     1063.5       -0.25       0.28    1758.6        1.27
200       11.2     1047.7       -0.08       0.50    2022.8        1.10
201       10.8     1013.6       -0.45      -0.24    1768.3        0.43
202       10.6      980.7       -0.25       0.35    1890.3        1.24
203       10.2     1063.5       -0.25       0.28    1758.6        1.27
204        9.3     1390.5        0.52       0.07    1589.4       -0.14
205       10.8     1013.6       -0.45      -0.24    1768.3        0.43
206        9.9     1076.4       -0.10       0.19    1748.2        1.70
207       10.2     1063.5       -0.25       0.28    1758.6        1.27
208       11.2     1047.7       -0.08       0.50    2022.8        1.10
209        9.3     1390.5        0.52       0.07    1589.4       -0.14
210       10.6      980.7       -0.25       0.35    1890.3        1.24
211       10.2     1063.5       -0.25       0.28    1758.6        1.27
212       10.8     1013.6       -0.45      -0.24    1768.3        0.43
213       10.2     1063.5       -0.25       0.28    1758.6        1.27
214       11.2     1047.7       -0.08       0.50    2022.8        1.10
215        9.9     1076.4       -0.10       0.19    1748.2        1.70
216        9.6     1072.9        0.21       0.14    1674.8       -0.28
217       10.9      856.3       -0.03       0.55    1974.4        3.07
218       10.3      919.3       -0.25       0.18    1748.3        2.00
219       11.4      836.8       -0.21       0.43    2078.9        1.03
220       10.6      972.1       -0.19       0.05    1828.8        0.43
221       11.2      900.8       -0.46      -0.09    1855.8        0.30
222       10.9      856.3       -0.03       0.55    1974.4        3.07
223       10.6      972.1       -0.19       0.05    1828.8        0.43
224       10.9      856.3       -0.03       0.55    1974.4        3.07
225       11.4      836.8       -0.21       0.43    2078.9        1.03
226        9.6     1072.9        0.21       0.14    1674.8       -0.28
227       10.9      856.3       -0.03       0.55    1974.4        3.07
228       11.2      900.8       -0.46      -0.09    1855.8        0.30
229       10.3      919.3       -0.25       0.18    1748.3        2.00
230       11.4      836.8       -0.21       0.43    2078.9        1.03
231       10.3      919.3       -0.25       0.18    1748.3        2.00
232       10.9      856.3       -0.03       0.55    1974.4        3.07
233       11.2      900.8       -0.46      -0.09    1855.8        0.30
234        9.6     1072.9        0.21       0.14    1674.8       -0.28
235       10.9      856.3       -0.03       0.55    1974.4        3.07
236       10.6      972.1       -0.19       0.05    1828.8        0.43
237       10.9      856.3       -0.03       0.55    1974.4        3.07
238       11.4      836.8       -0.21       0.43    2078.9        1.03
239       10.6      972.1       -0.19       0.05    1828.8        0.43
240       10.9      856.3       -0.03       0.55    1974.4        3.07
241       10.3      919.3       -0.25       0.18    1748.3        2.00
242       11.2      900.8       -0.46      -0.09    1855.8        0.30
243        9.6     1072.9        0.21       0.14    1674.8       -0.28
244        9.6     1072.9        0.21       0.14    1674.8       -0.28
245       10.9      856.3       -0.03       0.55    1974.4        3.07
246       11.2      900.8       -0.46      -0.09    1855.8        0.30
247       10.9      856.3       -0.03       0.55    1974.4        3.07
248       10.3      919.3       -0.25       0.18    1748.3        2.00
249       10.6      972.1       -0.19       0.05    1828.8        0.43
250       11.4      836.8       -0.21       0.43    2078.9        1.03
251       10.6      972.1       -0.19       0.05    1828.8        0.43
252       10.9      856.3       -0.03       0.55    1974.4        3.07
253       10.9      856.3       -0.03       0.55    1974.4        3.07
254       10.3      919.3       -0.25       0.18    1748.3        2.00
255        9.6     1072.9        0.21       0.14    1674.8       -0.28
256       11.2      900.8       -0.46      -0.09    1855.8        0.30
257       11.4      836.8       -0.21       0.43    2078.9        1.03
258        9.6     1072.9        0.21       0.14    1674.8       -0.28
259       11.4      836.8       -0.21       0.43    2078.9        1.03
260       10.3      919.3       -0.25       0.18    1748.3        2.00
261       11.2      900.8       -0.46      -0.09    1855.8        0.30
262       10.9      856.3       -0.03       0.55    1974.4        3.07
263       10.9      856.3       -0.03       0.55    1974.4        3.07
264       10.6      972.1       -0.19       0.05    1828.8        0.43
265       10.9      856.3       -0.03       0.55    1974.4        3.07
266       10.3      919.3       -0.25       0.18    1748.3        2.00
267        9.6     1072.9        0.21       0.14    1674.8       -0.28
268       11.2      900.8       -0.46      -0.09    1855.8        0.30
269       11.4      836.8       -0.21       0.43    2078.9        1.03
270       10.9      856.3       -0.03       0.55    1974.4        3.07
271       10.6      972.1       -0.19       0.05    1828.8        0.43
272       10.6      972.1       -0.19       0.05    1828.8        0.43
273       10.9      856.3       -0.03       0.55    1974.4        3.07
274        9.6     1072.9        0.21       0.14    1674.8       -0.28
275       11.2      900.8       -0.46      -0.09    1855.8        0.30
276       10.3      919.3       -0.25       0.18    1748.3        2.00
277       11.4      836.8       -0.21       0.43    2078.9        1.03
278       10.9      856.3       -0.03       0.55    1974.4        3.07
279       10.9      856.3       -0.03       0.55    1974.4        3.07
280        9.6     1072.9        0.21       0.14    1674.8       -0.28
281       11.2      900.8       -0.46      -0.09    1855.8        0.30
282       11.4      836.8       -0.21       0.43    2078.9        1.03
283       10.9      856.3       -0.03       0.55    1974.4        3.07
284       10.6      972.1       -0.19       0.05    1828.8        0.43
285       10.3      919.3       -0.25       0.18    1748.3        2.00
286       10.9      856.3       -0.03       0.55    1974.4        3.07
287       11.4      836.8       -0.21       0.43    2078.9        1.03
288       10.3      919.3       -0.25       0.18    1748.3        2.00
289        9.6     1072.9        0.21       0.14    1674.8       -0.28
290       11.2      900.8       -0.46      -0.09    1855.8        0.30
291       10.9      856.3       -0.03       0.55    1974.4        3.07
292       10.6      972.1       -0.19       0.05    1828.8        0.43
293        9.6     1072.9        0.21       0.14    1674.8       -0.28
294       11.4      836.8       -0.21       0.43    2078.9        1.03
295       10.3      919.3       -0.25       0.18    1748.3        2.00
296       10.6      972.1       -0.19       0.05    1828.8        0.43
297       10.9      856.3       -0.03       0.55    1974.4        3.07
298       11.2      900.8       -0.46      -0.09    1855.8        0.30
299       10.9      856.3       -0.03       0.55    1974.4        3.07
300       10.9      856.3       -0.03       0.55    1974.4        3.07
301        9.6     1072.9        0.21       0.14    1674.8       -0.28
302       10.6      972.1       -0.19       0.05    1828.8        0.43
303       10.3      919.3       -0.25       0.18    1748.3        2.00
304       11.2      900.8       -0.46      -0.09    1855.8        0.30
305       11.4      836.8       -0.21       0.43    2078.9        1.03
306       10.9      856.3       -0.03       0.55    1974.4        3.07
307       10.9      856.3       -0.03       0.55    1974.4        3.07
308        9.6     1072.9        0.21       0.14    1674.8       -0.28
309       10.9      856.3       -0.03       0.55    1974.4        3.07
310       11.2      900.8       -0.46      -0.09    1855.8        0.30
311       11.4      836.8       -0.21       0.43    2078.9        1.03
312       10.3      919.3       -0.25       0.18    1748.3        2.00
313       10.6      972.1       -0.19       0.05    1828.8        0.43
314       10.6      972.1       -0.19       0.05    1828.8        0.43
315       10.9      856.3       -0.03       0.55    1974.4        3.07
316       11.2      900.8       -0.46      -0.09    1855.8        0.30
317        9.6     1072.9        0.21       0.14    1674.8       -0.28
318       10.3      919.3       -0.25       0.18    1748.3        2.00
319       10.9      856.3       -0.03       0.55    1974.4        3.07
320       11.4      836.8       -0.21       0.43    2078.9        1.03
321       10.6      972.1       -0.19       0.05    1828.8        0.43
322        9.6     1072.9        0.21       0.14    1674.8       -0.28
323       11.4      836.8       -0.21       0.43    2078.9        1.03
324       10.9      856.3       -0.03       0.55    1974.4        3.07
325       11.2      900.8       -0.46      -0.09    1855.8        0.30
326       10.3      919.3       -0.25       0.18    1748.3        2.00
327       10.9      856.3       -0.03       0.55    1974.4        3.07
328       10.3      919.3       -0.25       0.18    1748.3        2.00
329       11.2      900.8       -0.46      -0.09    1855.8        0.30
330       10.9      856.3       -0.03       0.55    1974.4        3.07
331        9.6     1072.9        0.21       0.14    1674.8       -0.28
332       10.9      856.3       -0.03       0.55    1974.4        3.07
333       11.4      836.8       -0.21       0.43    2078.9        1.03
334       10.6      972.1       -0.19       0.05    1828.8        0.43
335       10.3      919.3       -0.25       0.18    1748.3        2.00
336       11.2      900.8       -0.46      -0.09    1855.8        0.30
337       10.9      856.3       -0.03       0.55    1974.4        3.07
338        9.6     1072.9        0.21       0.14    1674.8       -0.28
339       10.6      972.1       -0.19       0.05    1828.8        0.43
340       11.4      836.8       -0.21       0.43    2078.9        1.03
341       10.9      856.3       -0.03       0.55    1974.4        3.07
342        9.6     1072.9        0.21       0.14    1674.8       -0.28
343       10.3      919.3       -0.25       0.18    1748.3        2.00
344       11.2      900.8       -0.46      -0.09    1855.8        0.30
345       10.9      856.3       -0.03       0.55    1974.4        3.07
346       10.6      972.1       -0.19       0.05    1828.8        0.43
347       11.4      836.8       -0.21       0.43    2078.9        1.03
348       10.9      856.3       -0.03       0.55    1974.4        3.07
349       10.6      972.1       -0.19       0.05    1828.8        0.43
350        9.6     1072.9        0.21       0.14    1674.8       -0.28
351       11.2      900.8       -0.46      -0.09    1855.8        0.30
352       10.9      856.3       -0.03       0.55    1974.4        3.07
353       10.3      919.3       -0.25       0.18    1748.3        2.00
354       11.4      836.8       -0.21       0.43    2078.9        1.03
355       10.9      856.3       -0.03       0.55    1974.4        3.07
356       11.2      900.8       -0.46      -0.09    1855.8        0.30
357       10.6      972.1       -0.19       0.05    1828.8        0.43
358       10.3      919.3       -0.25       0.18    1748.3        2.00
359        9.6     1072.9        0.21       0.14    1674.8       -0.28
360       11.4      836.8       -0.21       0.43    2078.9        1.03
361       10.9      856.3       -0.03       0.55    1974.4        3.07
362       10.9      856.3       -0.03       0.55    1974.4        3.07
363       11.2      900.8       -0.46      -0.09    1855.8        0.30
364       10.6      972.1       -0.19       0.05    1828.8        0.43
365        9.6     1072.9        0.21       0.14    1674.8       -0.28
366       10.9      856.3       -0.03       0.55    1974.4        3.07
367       10.3      919.3       -0.25       0.18    1748.3        2.00
368       11.4      836.8       -0.21       0.43    2078.9        1.03
369       10.9      856.3       -0.03       0.55    1974.4        3.07
370        9.6     1072.9        0.21       0.14    1674.8       -0.28
371       10.3      919.3       -0.25       0.18    1748.3        2.00
372       11.2      900.8       -0.46      -0.09    1855.8        0.30
373       11.4      836.8       -0.21       0.43    2078.9        1.03
374       10.6      972.1       -0.19       0.05    1828.8        0.43
375       10.9      856.3       -0.03       0.55    1974.4        3.07
376       10.9      856.3       -0.03       0.55    1974.4        3.07
377       10.9      856.3       -0.03       0.55    1974.4        3.07
378       10.6      972.1       -0.19       0.05    1828.8        0.43
379       11.4      836.8       -0.21       0.43    2078.9        1.03
380       10.3      919.3       -0.25       0.18    1748.3        2.00
381        9.6     1072.9        0.21       0.14    1674.8       -0.28
382       11.2      900.8       -0.46      -0.09    1855.8        0.30
383       10.9      856.3       -0.03       0.55    1974.4        3.07
    NA_weather
55       FALSE
56       FALSE
57       FALSE
58       FALSE
59       FALSE
60       FALSE
61       FALSE
62       FALSE
63       FALSE
64       FALSE
65       FALSE
66       FALSE
67       FALSE
68       FALSE
69       FALSE
70       FALSE
71       FALSE
72       FALSE
73       FALSE
74       FALSE
75       FALSE
76       FALSE
77       FALSE
78       FALSE
79       FALSE
80       FALSE
81       FALSE
82       FALSE
83       FALSE
84       FALSE
85       FALSE
86       FALSE
87       FALSE
88       FALSE
89       FALSE
90       FALSE
91       FALSE
92       FALSE
93       FALSE
94       FALSE
95       FALSE
96       FALSE
97       FALSE
98       FALSE
99       FALSE
100      FALSE
101      FALSE
102      FALSE
103      FALSE
104      FALSE
105      FALSE
106      FALSE
107      FALSE
108      FALSE
109      FALSE
110      FALSE
111      FALSE
112      FALSE
113      FALSE
114      FALSE
115      FALSE
116      FALSE
117      FALSE
118      FALSE
119      FALSE
120      FALSE
121      FALSE
122      FALSE
123      FALSE
124      FALSE
125      FALSE
126      FALSE
127      FALSE
128      FALSE
129      FALSE
130      FALSE
131      FALSE
132      FALSE
133      FALSE
134      FALSE
135      FALSE
136      FALSE
137      FALSE
138      FALSE
139      FALSE
140      FALSE
141      FALSE
142      FALSE
143      FALSE
144      FALSE
145      FALSE
146      FALSE
147      FALSE
148      FALSE
149      FALSE
150      FALSE
151      FALSE
152      FALSE
153      FALSE
154      FALSE
155      FALSE
156      FALSE
157      FALSE
158      FALSE
159      FALSE
160      FALSE
161      FALSE
162      FALSE
163      FALSE
164      FALSE
165      FALSE
166      FALSE
167      FALSE
168      FALSE
169      FALSE
170      FALSE
171      FALSE
172      FALSE
173      FALSE
174      FALSE
175      FALSE
176      FALSE
177      FALSE
178      FALSE
179      FALSE
180      FALSE
181      FALSE
182      FALSE
183      FALSE
184      FALSE
185      FALSE
186      FALSE
187      FALSE
188      FALSE
189      FALSE
190      FALSE
191      FALSE
192      FALSE
193      FALSE
194      FALSE
195      FALSE
196      FALSE
197      FALSE
198      FALSE
199      FALSE
200      FALSE
201      FALSE
202      FALSE
203      FALSE
204      FALSE
205      FALSE
206      FALSE
207      FALSE
208      FALSE
209      FALSE
210      FALSE
211      FALSE
212      FALSE
213      FALSE
214      FALSE
215      FALSE
216      FALSE
217      FALSE
218      FALSE
219      FALSE
220      FALSE
221      FALSE
222      FALSE
223      FALSE
224      FALSE
225      FALSE
226      FALSE
227      FALSE
228      FALSE
229      FALSE
230      FALSE
231      FALSE
232      FALSE
233      FALSE
234      FALSE
235      FALSE
236      FALSE
237      FALSE
238      FALSE
239      FALSE
240      FALSE
241      FALSE
242      FALSE
243      FALSE
244      FALSE
245      FALSE
246      FALSE
247      FALSE
248      FALSE
249      FALSE
250      FALSE
251      FALSE
252      FALSE
253      FALSE
254      FALSE
255      FALSE
256      FALSE
257      FALSE
258      FALSE
259      FALSE
260      FALSE
261      FALSE
262      FALSE
263      FALSE
264      FALSE
265      FALSE
266      FALSE
267      FALSE
268      FALSE
269      FALSE
270      FALSE
271      FALSE
272      FALSE
273      FALSE
274      FALSE
275      FALSE
276      FALSE
277      FALSE
278      FALSE
279      FALSE
280      FALSE
281      FALSE
282      FALSE
283      FALSE
284      FALSE
285      FALSE
286      FALSE
287      FALSE
288      FALSE
289      FALSE
290      FALSE
291      FALSE
292      FALSE
293      FALSE
294      FALSE
295      FALSE
296      FALSE
297      FALSE
298      FALSE
299      FALSE
300      FALSE
301      FALSE
302      FALSE
303      FALSE
304      FALSE
305      FALSE
306      FALSE
307      FALSE
308      FALSE
309      FALSE
310      FALSE
311      FALSE
312      FALSE
313      FALSE
314      FALSE
315      FALSE
316      FALSE
317      FALSE
318      FALSE
319      FALSE
320      FALSE
321      FALSE
322      FALSE
323      FALSE
324      FALSE
325      FALSE
326      FALSE
327      FALSE
328      FALSE
329      FALSE
330      FALSE
331      FALSE
332      FALSE
333      FALSE
334      FALSE
335      FALSE
336      FALSE
337      FALSE
338      FALSE
339      FALSE
340      FALSE
341      FALSE
342      FALSE
343      FALSE
344      FALSE
345      FALSE
346      FALSE
347      FALSE
348      FALSE
349      FALSE
350      FALSE
351      FALSE
352      FALSE
353      FALSE
354      FALSE
355      FALSE
356      FALSE
357      FALSE
358      FALSE
359      FALSE
360      FALSE
361      FALSE
362      FALSE
363      FALSE
364      FALSE
365      FALSE
366      FALSE
367      FALSE
368      FALSE
369      FALSE
370      FALSE
371      FALSE
372      FALSE
373      FALSE
374      FALSE
375      FALSE
376      FALSE
377      FALSE
378      FALSE
379      FALSE
380      FALSE
381      FALSE
382      FALSE
383      FALSE

Methods

we used machine learning methods to assess how much information different sets of variables (c.f. P_var_sets) have each on the dependent variable (Puptake, Y-rel, P-balance), how redundant this information is. The machine learning methods to quantify the predictive power of different variable sets are: i) ordinary least squares (OLS) as a baseline; ii) XGBoost (gradient boosting with tree-based models and hyperparameter tuning for learning rate and tree depth) (arxiv:1603.02754); iii) Random Forests (with default parameters) (doi:10.1023/A:1010933404324). Computations were performed using the mlr3 framework (doi:10.21105/joss.01903). Performance was measured as percentage of explained variance on hold-out data via 5-fold cross-validation, calculated as (1 - MSE/Variance(y)), where MSE represents mean squared error.

We tried adjusting for weather variables but it seems that the ML-methods rather reconstruct the site-specific patterns….