<- readRDS("data/RES.rds")
RES <- RES$D
D ::get_logger("mlr3")$set_threshold("warn")
lgr# d <- RES$data
In [1]:
Setup
In [2]:
Benchmark helper function
library(mlr3verse, quietly = TRUE)
<- msrs(c("regr.mse"))
mse
if (!interactive())
::get_logger("mlr3")$set_threshold("warn")
lgr
<- function(tasks, nfolds = 5, resamplings = NULL) {
get_benchi_table # TODO activate xgboost and ranger for == uncomment things below
set.seed(123)
<- lrns(c("regr.featureless", "regr.lm"
learners # , "regr.xgboost", "regr.ranger"
))# learners$regr.xgboost$param_set$set_values(
# eta = 0.04,
# nrounds = 300,
# max_depth = 2
# )
<- xfun::cache_rds({
benchi benchmark(benchmark_grid(
tasks,
learners, if(is.null(resamplings)) rsmp("cv", folds = nfolds) else resamplings
))
}, file = "benchmark.rds",
dir = "cache/",
hash = list(tasks, nfolds)
)
<- tidyr::pivot_wider(benchi$aggregate(mse),
res id_cols = task_id,
names_from = learner_id,
values_from = regr.mse
|> as.data.frame()
)
rownames(res) <- res$task_id
<- res[, -1]
res colnames(res) <- gsub("regr.", "", colnames(res))
stopifnot(any(colnames(res) == "featureless"))
<- 1 - res / res$featureless
res -1, drop = FALSE] |> round(3)
res[, }
Testing prediction quality using
- Linear models
- Random forests (default parameters)
- XGBoost (with parameter tuning)
Weather Variables:
In [3]:
Code
<- c(
Weather_vars "anavg_temp", "ansum_prec",
"juvdev_prec", "juvdev_sun",
"ansum_sun", "juvdev_temp"
)
# set NA's to 0 but include a column to indicate that
<- is.na(D$juvdev_sun)
NA_weather <- 0
D[NA_weather, Weather_vars] $NA_weather <- NA_weather
D<- c(Weather_vars, "NA_weather")
Weather_vars
stopifnot(all(Weather_vars %in% names(D)))
Weather_vars
[1] "anavg_temp" "ansum_prec" "juvdev_prec" "juvdev_sun" "ansum_sun"
[6] "juvdev_temp" "NA_weather"
In [4]:
Code
<- list(
P_var_sets onlyweather = NULL,
k = "k",
PS = "PS_log",
kPS = c("PS_log", "k", "kPS_log"),
AAE10 = "P_AAE10_log",
CO2 = "P_CO2_log",
AAE10_CO2 = c("P_AAE10_log", "P_CO2_log", "P_AAE10_CO2_loglog"),
AAE10_CO2_kPS = c("P_AAE10_log", "P_CO2_log", "PS_log", "k", "kPS_log"),
CO2_kPS = c("P_CO2_log", "PS_log", "k", "kPS_log")
)<- c(
Earth_vars "soil_0_20_clay", "soil_0_20_pH_H2O", "soil_0_20_Corg", "soil_0_20_silt"
)
In [5]:
Code
<- c("Ymain_norm", "Ymain_rel", "annual_P_uptake", "annual_P_balance")
Y_vars_yield
<- c("PS_log", "k", "kPS_log", "P_AAE10_log", "P_CO2_log") Y_vars_earth
impute NA’s for Earth variables. impute value with the mean of Site X block
In [6]:
Code
# xtabs(~is.na(D$soil_0_20_silt) + Site + block, D)
for (var in Earth_vars) {
<- ave(D[[var]], D$Site, D$block, FUN = \(x) ifelse(is.na(x), mean(x, na.rm = TRUE), x))
D[[var]] }
remove Cadenazzoo since too many crucial data missing
In [7]:
Code
<- D[D$site != "CAD", ]
D $Site <- droplevels(D$Site) D
Now check NA’s
In [8]:
Code
sapply(D[, unique(c(Y_vars_yield, Y_vars_earth, Weather_vars, unlist(P_var_sets), Earth_vars))],
sum(is.na(x)|is.nan(x))) |> cbind() \(x)
[,1]
Ymain_norm 23
Ymain_rel 117
annual_P_uptake 70
annual_P_balance 55
PS_log 0
k 0
kPS_log 0
P_AAE10_log 0
P_CO2_log 0
anavg_temp 0
ansum_prec 0
juvdev_prec 0
juvdev_sun 0
ansum_sun 0
juvdev_temp 0
NA_weather 0
P_AAE10_CO2_loglog 0
soil_0_20_clay 0
soil_0_20_pH_H2O 0
soil_0_20_Corg 0
soil_0_20_silt 0
Predicting Yield variables (with/without Weather data) with Earth-dynamics
With Weather data
In [9]:
Code
P_var_sets
$onlyweather
NULL
$k
[1] "k"
$PS
[1] "PS_log"
$kPS
[1] "PS_log" "k" "kPS_log"
$AAE10
[1] "P_AAE10_log"
$CO2
[1] "P_CO2_log"
$AAE10_CO2
[1] "P_AAE10_log" "P_CO2_log" "P_AAE10_CO2_loglog"
$AAE10_CO2_kPS
[1] "P_AAE10_log" "P_CO2_log" "PS_log" "k" "kPS_log"
$CO2_kPS
[1] "P_CO2_log" "PS_log" "k" "kPS_log"
Algorithm learns to predict location from weather since we do not do stratified cross-validation (leaving out locations).
In [10]:
Code
<- list()
Tables_yield_weather for(yvar in Y_vars_yield){
<- complete.cases(D[,unique(c(yvar ,Weather_vars, unlist(P_var_sets)))])
ind
<- list()
mytsks for (nam in names(P_var_sets)) {
<- as_task_regr(
mytsk c(yvar, Weather_vars, P_var_sets[[nam]])],
D[ind, target = yvar,
id = nam)
<- mytsk
mytsks[[nam]]
}<- get_benchi_table(mytsks)
Tables_yield_weather[[yvar]]
}
Tables_yield_weather
$Ymain_norm
lm
onlyweather -0.018
k 0.023
PS 0.204
kPS 0.203
AAE10 0.147
CO2 0.231
AAE10_CO2 0.235
AAE10_CO2_kPS 0.220
CO2_kPS 0.246
$Ymain_rel
lm
onlyweather 0.132
k 0.105
PS 0.184
kPS 0.189
AAE10 0.222
CO2 0.210
AAE10_CO2 0.245
AAE10_CO2_kPS 0.238
CO2_kPS 0.157
$annual_P_uptake
lm
onlyweather 0.391
k 0.353
PS 0.446
kPS 0.415
AAE10 0.496
CO2 0.463
AAE10_CO2 0.491
AAE10_CO2_kPS 0.463
CO2_kPS 0.449
$annual_P_balance
lm
onlyweather 0.113
k 0.077
PS 0.627
kPS 0.632
AAE10 0.432
CO2 0.594
AAE10_CO2 0.591
AAE10_CO2_kPS 0.652
CO2_kPS 0.644
In [11]:
Code
<- do.call(cbind, lapply(Tables_yield_weather, \(x) x$lm));
tmp rownames(tmp) <- rownames(Tables_yield_weather[[1]])
<- tmp) (Tables_yield_weather_lm
Ymain_norm Ymain_rel annual_P_uptake annual_P_balance
onlyweather -0.018 0.132 0.391 0.113
k 0.023 0.105 0.353 0.077
PS 0.204 0.184 0.446 0.627
kPS 0.203 0.189 0.415 0.632
AAE10 0.147 0.222 0.496 0.432
CO2 0.231 0.210 0.463 0.594
AAE10_CO2 0.235 0.245 0.491 0.591
AAE10_CO2_kPS 0.220 0.238 0.463 0.652
CO2_kPS 0.246 0.157 0.449 0.644
Without Weather data
In [12]:
Code
<- P_var_sets[-1]
P_var_sets_noweather
<- list()
Tables_yield for(yvar in Y_vars_yield){
<- complete.cases(D[,unique(c(yvar, unlist(P_var_sets_noweather)))])
ind
<- list()
mytsks for (nam in names(P_var_sets_noweather)) {
<- as_task_regr(
mytsk
D[ind,c(yvar, P_var_sets_noweather[[nam]]
# ,"Site"
)],target = yvar,
id = nam)
# mytsk$set_col_roles("Site", "group")
<- mytsk
mytsks[[nam]]
}<- get_benchi_table(mytsks)
Tables_yield[[yvar]]
}
Tables_yield
$Ymain_norm
lm
k 0.021
PS 0.223
kPS 0.215
AAE10 0.109
CO2 0.228
AAE10_CO2 0.232
AAE10_CO2_kPS 0.233
CO2_kPS 0.232
$Ymain_rel
lm
k -0.009
PS 0.051
kPS 0.036
AAE10 0.152
CO2 0.105
AAE10_CO2 0.129
AAE10_CO2_kPS 0.139
CO2_kPS 0.094
$annual_P_uptake
lm
k -0.005
PS 0.034
kPS 0.030
AAE10 0.095
CO2 0.075
AAE10_CO2 0.097
AAE10_CO2_kPS 0.049
CO2_kPS 0.046
$annual_P_balance
lm
k 0.018
PS 0.553
kPS 0.540
AAE10 0.277
CO2 0.500
AAE10_CO2 0.491
AAE10_CO2_kPS 0.562
CO2_kPS 0.561
In [13]:
Code
<- do.call(cbind, lapply(Tables_yield, \(x) x$lm));
tmp rownames(tmp) <- rownames(Tables_yield[[1]])
<- tmp) (Tables_yield_lm
Ymain_norm Ymain_rel annual_P_uptake annual_P_balance
k 0.021 -0.009 -0.005 0.018
PS 0.223 0.051 0.034 0.553
kPS 0.215 0.036 0.030 0.540
AAE10 0.109 0.152 0.095 0.277
CO2 0.228 0.105 0.075 0.500
AAE10_CO2 0.232 0.129 0.097 0.491
AAE10_CO2_kPS 0.233 0.139 0.049 0.562
CO2_kPS 0.232 0.094 0.046 0.561
xgboost & ranger are no good in this setting since only very few variables available
Predicting Earth-dynamics via soil variables (with/without Treatment)
In [14]:
Code
Earth_vars
[1] "soil_0_20_clay" "soil_0_20_pH_H2O" "soil_0_20_Corg" "soil_0_20_silt"
Code
Y_vars_earth
[1] "PS_log" "k" "kPS_log" "P_AAE10_log" "P_CO2_log"
In [15]:
Code
$is.trt0 <- D$Treatment == "P0"
D$is.trt1 <- D$Treatment == "P100"
D
<- list()
mytsks_treatment <- list()
mytsks_notreatment for(yvar in Y_vars_earth){
<- complete.cases(D[,unique(c(yvar, unlist(P_var_sets_noweather)))])
ind
<- as_task_regr(
mytsk c(yvar, Earth_vars, "is.trt1", "is.trt0"
D[ind, # ,"Site"
)],target = yvar,
id = yvar)
# mytsk$set_col_roles("Site", "group")
<- mytsk
mytsks_treatment[[yvar]]
<- as_task_regr(
mytsk c(yvar, Earth_vars
D[ind, # ,"Site"
)],target = yvar,
id = yvar)
# mytsk$set_col_roles("Site", "group")
<- mytsk
mytsks_notreatment[[yvar]]
}
<- get_benchi_table(mytsks_treatment)
Tables_earth_treatment <- get_benchi_table(mytsks_notreatment) Tables_earth_notreatment
In [16]:
Tables_earth_treatment
lm
PS_log 0.885
k 0.328
kPS_log 0.752
P_AAE10_log 0.824
P_CO2_log 0.792
Tables_earth_notreatment
lm
PS_log 0.042
k 0.267
kPS_log 0.023
P_AAE10_log 0.365
P_CO2_log 0.025
In [17]:
Code
<- rbind(
tmp "soil + treatment" = Tables_earth_treatment[["lm"]],
"only soil" = Tables_earth_notreatment[["lm"]]
)colnames(tmp) <- rownames(Tables_earth_treatment)
<- tmp) (Tables_earth_lm
PS_log k kPS_log P_AAE10_log P_CO2_log
soil + treatment 0.885 0.328 0.752 0.824 0.792
only soil 0.042 0.267 0.023 0.365 0.025
In [18]:
Code
saveRDS(list(
Tables_yield = Tables_yield,
Tables_yield_weather = Tables_yield_weather,
Tables_earth_treatment = Tables_earth_treatment,
Tables_earth_notreatment = Tables_earth_notreatment,
Tables_yield_lm = Tables_yield_lm,
Tables_yield_weather_lm = Tables_yield_weather_lm,
Tables_earth_lm = Tables_earth_lm
"cache/benchmark-tables.rds") ),
In [19]:
Code
cor(D$annual_P_balance, D$PS) # 0.54389
[1] NA
Code
cor(D$fert_P_tot, D$PS) # 0.48236
[1] 0.6449276
Code
cor(D$annual_P_uptake, D$PS) # 0.070678
[1] NA
We did manage to have high predictive power for weather. This could also be due to our regression models recovering location&year from it and hence still overfitting on the test set.
Without Weather data we only managed for annual balance to get some predictive power (30%). Since we the balance is uptake - fert_P, this means that we mostly predicted fert_P. Interestingly PS is best to predict this quantity
Legacy Code
In [20]:
XGBoost - Parameter Tuning
# Get parameter estimates for XGBoost
<- as_task_regr(
t subset(D[complete.cases(D$annual_P_balance),],
select = c("annual_P_balance", P_var_sets$AAE10_CO2_kPS#, Weather_vars
)),target = "annual_P_balance"
)
<- lrn("regr.xgboost",
l nrounds = 500 # More iterations due to lower learning rate
)
# Create search space
<- ps(
ps max_depth = p_int(2, 4),
eta = p_dbl(0.001, 0.3, tags = "logscale")
)
# Setup tuning
<- ti(
instance task = t,
learner = l,
resampling = rsmp("cv", folds = 3),
measure = msr("regr.mse"),
terminator = trm("none"),
search_space = ps
)
# Grid search
<- mlr3tuning::tnr("grid_search")
tuner $optimize(instance)
tuner$result instance
Ymain_rel max_depth eta learner_param_vals x_domain regr.mse
P uptake max_depth eta learner_param_vals x_domain regr.mse
annual_P_balance max_depth eta learner_param_vals x_domain regr.mse
In [21]:
Code
# nlme.coef$kPS_log <- nlme.coef$k * nlme.coef$PS
#
#
# nlme.coef.mrg <- merge(nlme.coef,allP[allP$year>=2017,],by = "uid")
# # add log-transformed versions
# D$kPS_log <- log(D$kPS_log)
# D$PS_log <- log(D$PS)
# D$soil_0_20_P_AAE10_log <- log(D$soil_0_20_P_AAE10)
# D$soil_0_20_P_CO2_log <- log(D$soil_0_20_P_CO2)
#
# D$k
subset(D, select = c("Ymain_rel", P_var_sets$AAE10_CO2_kPS, Weather_vars))
Ymain_rel P_AAE10_log P_CO2_log PS_log k kPS_log
55 72.33 1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
56 92.91 1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
57 65.60 1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
58 NA 1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
59 NA 1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
60 NA 1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
61 84.81 1.8870696 -1.46967597 -2.9145147 0.20191085 -4.514444
62 NA 1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
63 106.32 1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
64 69.17 1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
65 NA 1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
66 84.97 1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
67 82.00 1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
68 NA 1.8245493 -1.34707365 -2.6264148 0.23310593 -4.082677
69 89.08 0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
70 81.01 0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
71 NA 0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
72 66.00 0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
73 NA 0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
74 74.25 0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
75 NA 0.8329091 -1.83258146 -3.3408312 0.15014993 -5.236952
76 79.31 1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
77 NA 1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
78 74.44 1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
79 92.33 1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
80 80.85 1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
81 NA 1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
82 NA 1.8870696 -1.34707365 -3.8896385 0.13492618 -5.892666
83 109.20 3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
84 NA 3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
85 NA 3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
86 NA 3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
87 91.61 3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
88 63.16 3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
89 91.33 3.1045867 -0.38566248 -1.4927360 0.11739091 -3.634982
90 NA 2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
91 NA 2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
92 NA 2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
93 68.61 2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
94 73.44 2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
95 78.32 2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
96 101.92 2.8449094 -0.63487827 -2.1350669 0.17309044 -3.889008
97 80.26 2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
98 107.85 2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
99 NA 2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
100 NA 2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
101 72.56 2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
102 95.57 2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
103 NA 2.4069451 -1.17118298 -2.2181329 0.17801699 -3.944009
104 NA 2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
105 52.11 2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
106 69.74 2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
107 93.51 2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
108 NA 2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
109 NA 2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
110 72.61 2.6741486 -0.94160854 -2.2067423 0.17736688 -3.936277
111 90.42 4.2017031 0.76546784 -0.9083699 0.23219455 -2.368550
112 NA 4.2017031 0.76546784 -0.9083699 0.23219455 -2.368550
113 NA 4.2017031 0.76546784 -0.9083699 0.23219455 -2.368550
114 94.15 4.2017031 0.76546784 -0.9083699 0.23219455 -2.368550
115 90.11 4.2017031 0.76546784 -0.9083699 0.23219455 -2.368550
116 62.97 4.2017031 0.76546784 -0.9083699 0.23219455 -2.368550
117 NA 4.2017031 0.76546784 -0.9083699 0.23219455 -2.368550
118 85.44 3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
119 97.94 3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
120 NA 3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
121 104.41 3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
122 81.58 3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
123 NA 3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
124 NA 3.0540012 -0.51082562 -1.6359640 0.15615814 -3.492850
125 83.33 3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
126 NA 3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
127 NA 3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
128 76.88 3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
129 47.89 3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
130 NA 3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
131 87.03 3.4873751 -0.10536052 -1.3788326 0.17699689 -3.110456
132 125.95 2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
133 83.27 2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
134 NA 2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
135 NA 2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
136 66.48 2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
137 NA 2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
138 132.89 2.8507065 -0.99425227 -3.3238864 0.22062441 -4.835180
139 NA 3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
140 75.56 3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
141 NA 3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
142 117.88 3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
143 65.52 3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
144 NA 3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
145 91.54 3.0492730 -1.07880966 -3.2178905 0.18943117 -4.881620
146 NA 3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
147 65.33 3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
148 77.26 3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
149 NA 3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
150 NA 3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
151 133.86 3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
152 93.11 3.1570004 -1.10866262 -3.6548744 0.28439752 -4.912257
153 NA 2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
154 89.10 2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
155 54.11 2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
156 86.78 2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
157 NA 2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
158 NA 2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
159 126.90 2.7972813 -1.27296568 -3.3755708 0.21679430 -4.904377
160 NA 3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
161 87.36 3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
162 NA 3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
163 109.78 3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
164 145.89 3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
165 NA 3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
166 90.60 3.5055574 -0.69314718 -2.3555262 0.34791259 -3.411330
167 NA 3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
168 92.78 3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
169 79.12 3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
170 94.92 3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
171 139.72 3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
172 NA 3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
173 NA 3.4750672 -0.57981850 -2.4402754 0.30702495 -3.621102
174 77.97 3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
175 NA 3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
176 92.11 3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
177 138.29 3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
178 NA 3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
179 NA 3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
180 87.56 3.6988298 -0.63487827 -2.5704141 0.25060055 -3.954309
181 96.55 3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
182 90.00 3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
183 NA 3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
184 137.97 3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
185 NA 3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
186 96.80 3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
187 NA 3.1267605 -0.79850770 -2.8188200 0.16133292 -4.643105
188 134.81 3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
189 58.00 3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
190 NA 3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
191 NA 3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
192 84.67 3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
193 88.53 3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
194 NA 3.8712010 -0.43078292 -2.0165660 0.29038401 -3.253117
195 NA 3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
196 NA 3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
197 NA 3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
198 117.78 3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
199 132.12 3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
200 97.18 3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
201 92.53 3.9039908 -0.38566248 -1.8173600 0.22557569 -3.306459
202 NA 3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
203 NA 3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
204 NA 3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
205 98.28 3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
206 91.44 3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
207 137.66 3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
208 90.98 3.9512437 -0.16251893 -1.6506135 0.13768829 -3.633376
209 NA 3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
210 NA 3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
211 NA 3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
212 92.34 3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
213 132.91 3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
214 94.74 3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
215 108.89 3.8372995 -0.51082562 -1.7109028 0.06500092 -4.444257
216 NA 2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
217 NA 2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
218 98.64 2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
219 94.74 2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
220 98.67 2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
221 90.23 2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
222 108.37 2.5649494 -1.46967597 -3.0602039 0.22808615 -4.538236
223 82.03 2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
224 115.94 2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
225 89.10 2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
226 NA 2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
227 NA 2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
228 81.61 2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
229 83.91 2.6390573 -1.46967597 -2.9064446 0.20616803 -4.485508
230 92.86 3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
231 83.28 3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
232 113.04 3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
233 93.87 3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
234 NA 3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
235 NA 3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
236 104.22 3.2695689 -1.34707365 -2.6081966 0.15273297 -4.487261
237 110.14 2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
238 96.24 2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
239 104.70 2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
240 NA 2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
241 97.49 2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
242 91.95 2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
243 NA 2.2823824 -1.51412773 -2.5903371 0.14899842 -4.494157
244 NA 3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
245 NA 3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
246 92.15 3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
247 107.57 3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
248 98.85 3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
249 100.00 3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
250 86.47 3.4843123 -0.56211892 -2.0944336 0.19984180 -3.704663
251 96.38 3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
252 140.42 3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
253 NA 3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
254 100.00 3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
255 NA 3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
256 92.53 3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
257 94.92 3.3286267 -0.40047757 -1.6439616 0.10705720 -3.878354
258 NA 3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
259 97.18 3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
260 96.34 3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
261 95.02 3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
262 NA 3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
263 126.25 3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
264 113.27 3.4339872 -0.67334455 -2.1715576 0.21193823 -3.723018
265 NA 3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
266 104.28 3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
267 NA 3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
268 94.25 3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
269 102.07 3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
270 119.16 3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
271 99.28 3.1484534 -0.67334455 -2.0030331 0.18423357 -3.694584
272 108.69 3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
273 130.60 3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
274 NA 3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
275 93.30 3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
276 96.66 3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
277 100.75 3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
278 NA 3.6428355 -0.16251893 -1.5511331 0.13120470 -3.582130
279 NA 3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
280 NA 3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
281 97.51 3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
282 111.65 3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
283 128.34 3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
284 85.16 3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
285 99.69 3.5174978 -0.09431068 -1.2221855 0.10473925 -3.478467
286 130.43 3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
287 93.42 3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
288 106.17 3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
289 NA 3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
290 94.44 3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
291 NA 3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
292 88.06 3.5204608 -0.38566248 -1.2647377 0.13141530 -3.294130
293 NA 4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
294 106.02 4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
295 100.42 4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
296 96.86 4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
297 133.49 4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
298 94.25 4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
299 NA 4.0621657 -0.05129329 -1.2757306 0.21076772 -2.832729
300 NA 2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
301 NA 2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
302 86.01 2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
303 104.08 2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
304 69.73 2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
305 80.08 2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
306 91.63 2.6810215 -1.77195684 -3.8181685 0.18211399 -5.521291
307 66.34 3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
308 NA 3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
309 NA 3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
310 67.05 3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
311 61.28 3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
312 94.25 3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
313 81.18 3.0155349 -1.77195684 -3.7414147 0.22288952 -5.242494
314 98.91 3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
315 NA 3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
316 75.10 3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
317 NA 3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
318 110.97 3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
319 129.31 3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
320 94.92 3.5234150 -1.34707365 -3.8931747 0.14517478 -5.822992
321 88.90 2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
322 NA 2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
323 64.66 2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
324 NA 2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
325 65.52 2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
326 71.26 2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
327 75.85 2.8390785 -1.83258146 -3.6735278 0.26166020 -5.014236
328 100.10 4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
329 86.78 4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
330 135.27 4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
331 NA 4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
332 NA 4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
333 114.85 4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
334 106.63 4.2253728 -0.23572233 -2.0697768 0.21782370 -3.593846
335 99.69 3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
336 97.89 3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
337 145.25 3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
338 NA 3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
339 105.43 3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
340 109.77 3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
341 NA 3.9376908 -0.57981850 -2.3967665 0.21384349 -3.939277
342 NA 3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
343 108.05 3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
344 88.12 3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
345 129.95 3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
346 97.83 3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
347 108.65 3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
348 NA 3.5582011 -0.99425227 -2.6575735 0.21147919 -4.211202
349 109.17 3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
350 NA 3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
351 81.61 3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
352 117.23 3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
353 110.24 3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
354 102.63 3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
355 NA 3.7013020 -0.63487827 -2.6521244 0.21152273 -4.205547
356 89.46 4.3385971 0.07696104 -1.4624073 0.18550740 -3.147068
357 113.99 4.3385971 0.07696104 -1.4624073 0.18550740 -3.147068
358 98.22 4.3385971 0.07696104 -1.4624073 0.18550740 -3.147068
359 NA 4.3385971 0.07696104 -1.4624073 0.18550740 -3.147068
360 106.02 4.3385971 0.07696104 -1.4624073 0.18550740 -3.147068
361 131.88 4.3385971 0.07696104 -1.4624073 0.18550740 -3.147068
362 NA 4.3385971 0.07696104 -1.4624073 0.18550740 -3.147068
363 99.62 4.5174313 0.67803354 -1.2422076 0.13496530 -3.244945
364 103.50 4.5174313 0.67803354 -1.2422076 0.13496530 -3.244945
365 NA 4.5174313 0.67803354 -1.2422076 0.13496530 -3.244945
366 143.00 4.5174313 0.67803354 -1.2422076 0.13496530 -3.244945
367 111.18 4.5174313 0.67803354 -1.2422076 0.13496530 -3.244945
368 113.35 4.5174313 0.67803354 -1.2422076 0.13496530 -3.244945
369 NA 4.5174313 0.67803354 -1.2422076 0.13496530 -3.244945
370 NA 4.2668963 0.11332869 -1.5757798 0.20749743 -3.148416
371 92.89 4.2668963 0.11332869 -1.5757798 0.20749743 -3.148416
372 89.85 4.2668963 0.11332869 -1.5757798 0.20749743 -3.148416
373 114.85 4.2668963 0.11332869 -1.5757798 0.20749743 -3.148416
374 134.86 4.2668963 0.11332869 -1.5757798 0.20749743 -3.148416
375 NA 4.2668963 0.11332869 -1.5757798 0.20749743 -3.148416
376 132.21 4.2668963 0.11332869 -1.5757798 0.20749743 -3.148416
377 NA 4.0656021 0.53649337 -2.1617951 0.28873132 -3.404054
378 128.47 4.0656021 0.53649337 -2.1617951 0.28873132 -3.404054
379 107.89 4.0656021 0.53649337 -2.1617951 0.28873132 -3.404054
380 110.14 4.0656021 0.53649337 -2.1617951 0.28873132 -3.404054
381 NA 4.0656021 0.53649337 -2.1617951 0.28873132 -3.404054
382 81.03 4.0656021 0.53649337 -2.1617951 0.28873132 -3.404054
383 125.60 4.0656021 0.53649337 -2.1617951 0.28873132 -3.404054
anavg_temp ansum_prec juvdev_prec juvdev_sun ansum_sun juvdev_temp
55 10.1 1035.6 0.23 0.22 1960.0 1.37
56 11.2 752.6 -0.36 -0.02 2105.7 0.40
57 11.3 725.8 -0.38 0.42 2019.7 1.00
58 9.5 1029.7 0.23 0.13 1692.1 -0.34
59 10.7 870.9 -0.35 0.18 1886.0 1.10
60 10.5 993.9 -0.25 0.44 1862.4 1.60
61 10.5 993.9 -0.25 0.44 1862.4 1.60
62 10.5 993.9 -0.25 0.44 1862.4 1.60
63 11.2 752.6 -0.36 -0.02 2105.7 0.40
64 11.3 725.8 -0.38 0.42 2019.7 1.00
65 10.7 870.9 -0.35 0.18 1886.0 1.10
66 10.5 993.9 -0.25 0.44 1862.4 1.60
67 10.1 1035.6 0.23 0.22 1960.0 1.37
68 9.5 1029.7 0.23 0.13 1692.1 -0.34
69 11.2 752.6 -0.36 -0.02 2105.7 0.40
70 10.5 993.9 -0.25 0.44 1862.4 1.60
71 10.5 993.9 -0.25 0.44 1862.4 1.60
72 10.1 1035.6 0.23 0.22 1960.0 1.37
73 9.5 1029.7 0.23 0.13 1692.1 -0.34
74 11.3 725.8 -0.38 0.42 2019.7 1.00
75 10.7 870.9 -0.35 0.18 1886.0 1.10
76 11.2 752.6 -0.36 -0.02 2105.7 0.40
77 9.5 1029.7 0.23 0.13 1692.1 -0.34
78 11.3 725.8 -0.38 0.42 2019.7 1.00
79 10.1 1035.6 0.23 0.22 1960.0 1.37
80 10.5 993.9 -0.25 0.44 1862.4 1.60
81 10.7 870.9 -0.35 0.18 1886.0 1.10
82 10.5 993.9 -0.25 0.44 1862.4 1.60
83 11.2 752.6 -0.36 -0.02 2105.7 0.40
84 10.5 993.9 -0.25 0.44 1862.4 1.60
85 10.7 870.9 -0.35 0.18 1886.0 1.10
86 9.5 1029.7 0.23 0.13 1692.1 -0.34
87 10.5 993.9 -0.25 0.44 1862.4 1.60
88 11.3 725.8 -0.38 0.42 2019.7 1.00
89 10.1 1035.6 0.23 0.22 1960.0 1.37
90 10.7 870.9 -0.35 0.18 1886.0 1.10
91 10.5 993.9 -0.25 0.44 1862.4 1.60
92 9.5 1029.7 0.23 0.13 1692.1 -0.34
93 11.3 725.8 -0.38 0.42 2019.7 1.00
94 10.1 1035.6 0.23 0.22 1960.0 1.37
95 10.5 993.9 -0.25 0.44 1862.4 1.60
96 11.2 752.6 -0.36 -0.02 2105.7 0.40
97 11.3 725.8 -0.38 0.42 2019.7 1.00
98 11.2 752.6 -0.36 -0.02 2105.7 0.40
99 10.5 993.9 -0.25 0.44 1862.4 1.60
100 9.5 1029.7 0.23 0.13 1692.1 -0.34
101 10.1 1035.6 0.23 0.22 1960.0 1.37
102 10.5 993.9 -0.25 0.44 1862.4 1.60
103 10.7 870.9 -0.35 0.18 1886.0 1.10
104 9.5 1029.7 0.23 0.13 1692.1 -0.34
105 10.1 1035.6 0.23 0.22 1960.0 1.37
106 11.3 725.8 -0.38 0.42 2019.7 1.00
107 10.5 993.9 -0.25 0.44 1862.4 1.60
108 10.5 993.9 -0.25 0.44 1862.4 1.60
109 10.7 870.9 -0.35 0.18 1886.0 1.10
110 11.2 752.6 -0.36 -0.02 2105.7 0.40
111 11.2 752.6 -0.36 -0.02 2105.7 0.40
112 10.7 870.9 -0.35 0.18 1886.0 1.10
113 10.5 993.9 -0.25 0.44 1862.4 1.60
114 10.5 993.9 -0.25 0.44 1862.4 1.60
115 10.1 1035.6 0.23 0.22 1960.0 1.37
116 11.3 725.8 -0.38 0.42 2019.7 1.00
117 9.5 1029.7 0.23 0.13 1692.1 -0.34
118 10.1 1035.6 0.23 0.22 1960.0 1.37
119 10.5 993.9 -0.25 0.44 1862.4 1.60
120 9.5 1029.7 0.23 0.13 1692.1 -0.34
121 11.2 752.6 -0.36 -0.02 2105.7 0.40
122 11.3 725.8 -0.38 0.42 2019.7 1.00
123 10.7 870.9 -0.35 0.18 1886.0 1.10
124 10.5 993.9 -0.25 0.44 1862.4 1.60
125 11.2 752.6 -0.36 -0.02 2105.7 0.40
126 10.5 993.9 -0.25 0.44 1862.4 1.60
127 9.5 1029.7 0.23 0.13 1692.1 -0.34
128 11.3 725.8 -0.38 0.42 2019.7 1.00
129 10.1 1035.6 0.23 0.22 1960.0 1.37
130 10.7 870.9 -0.35 0.18 1886.0 1.10
131 10.5 993.9 -0.25 0.44 1862.4 1.60
132 10.2 1063.5 -0.25 0.28 1758.6 1.27
133 11.2 1047.7 -0.08 0.50 2022.8 1.10
134 10.2 1063.5 -0.25 0.28 1758.6 1.27
135 9.3 1390.5 0.52 0.07 1589.4 -0.14
136 10.8 1013.6 -0.45 -0.24 1768.3 0.43
137 10.6 980.7 -0.25 0.35 1890.3 1.24
138 9.9 1076.4 -0.10 0.19 1748.2 1.70
139 9.3 1390.5 0.52 0.07 1589.4 -0.14
140 9.9 1076.4 -0.10 0.19 1748.2 1.70
141 10.6 980.7 -0.25 0.35 1890.3 1.24
142 10.2 1063.5 -0.25 0.28 1758.6 1.27
143 10.8 1013.6 -0.45 -0.24 1768.3 0.43
144 10.2 1063.5 -0.25 0.28 1758.6 1.27
145 11.2 1047.7 -0.08 0.50 2022.8 1.10
146 9.3 1390.5 0.52 0.07 1589.4 -0.14
147 10.8 1013.6 -0.45 -0.24 1768.3 0.43
148 11.2 1047.7 -0.08 0.50 2022.8 1.10
149 10.2 1063.5 -0.25 0.28 1758.6 1.27
150 10.6 980.7 -0.25 0.35 1890.3 1.24
151 10.2 1063.5 -0.25 0.28 1758.6 1.27
152 9.9 1076.4 -0.10 0.19 1748.2 1.70
153 10.6 980.7 -0.25 0.35 1890.3 1.24
154 11.2 1047.7 -0.08 0.50 2022.8 1.10
155 9.9 1076.4 -0.10 0.19 1748.2 1.70
156 10.8 1013.6 -0.45 -0.24 1768.3 0.43
157 10.2 1063.5 -0.25 0.28 1758.6 1.27
158 9.3 1390.5 0.52 0.07 1589.4 -0.14
159 10.2 1063.5 -0.25 0.28 1758.6 1.27
160 9.3 1390.5 0.52 0.07 1589.4 -0.14
161 10.8 1013.6 -0.45 -0.24 1768.3 0.43
162 10.2 1063.5 -0.25 0.28 1758.6 1.27
163 9.9 1076.4 -0.10 0.19 1748.2 1.70
164 10.2 1063.5 -0.25 0.28 1758.6 1.27
165 10.6 980.7 -0.25 0.35 1890.3 1.24
166 11.2 1047.7 -0.08 0.50 2022.8 1.10
167 10.6 980.7 -0.25 0.35 1890.3 1.24
168 9.9 1076.4 -0.10 0.19 1748.2 1.70
169 10.8 1013.6 -0.45 -0.24 1768.3 0.43
170 11.2 1047.7 -0.08 0.50 2022.8 1.10
171 10.2 1063.5 -0.25 0.28 1758.6 1.27
172 9.3 1390.5 0.52 0.07 1589.4 -0.14
173 10.2 1063.5 -0.25 0.28 1758.6 1.27
174 10.8 1013.6 -0.45 -0.24 1768.3 0.43
175 10.6 980.7 -0.25 0.35 1890.3 1.24
176 11.2 1047.7 -0.08 0.50 2022.8 1.10
177 10.2 1063.5 -0.25 0.28 1758.6 1.27
178 9.3 1390.5 0.52 0.07 1589.4 -0.14
179 10.2 1063.5 -0.25 0.28 1758.6 1.27
180 9.9 1076.4 -0.10 0.19 1748.2 1.70
181 10.8 1013.6 -0.45 -0.24 1768.3 0.43
182 9.9 1076.4 -0.10 0.19 1748.2 1.70
183 9.3 1390.5 0.52 0.07 1589.4 -0.14
184 10.2 1063.5 -0.25 0.28 1758.6 1.27
185 10.6 980.7 -0.25 0.35 1890.3 1.24
186 11.2 1047.7 -0.08 0.50 2022.8 1.10
187 10.2 1063.5 -0.25 0.28 1758.6 1.27
188 10.2 1063.5 -0.25 0.28 1758.6 1.27
189 9.9 1076.4 -0.10 0.19 1748.2 1.70
190 9.3 1390.5 0.52 0.07 1589.4 -0.14
191 10.6 980.7 -0.25 0.35 1890.3 1.24
192 10.8 1013.6 -0.45 -0.24 1768.3 0.43
193 11.2 1047.7 -0.08 0.50 2022.8 1.10
194 10.2 1063.5 -0.25 0.28 1758.6 1.27
195 10.6 980.7 -0.25 0.35 1890.3 1.24
196 9.3 1390.5 0.52 0.07 1589.4 -0.14
197 10.2 1063.5 -0.25 0.28 1758.6 1.27
198 9.9 1076.4 -0.10 0.19 1748.2 1.70
199 10.2 1063.5 -0.25 0.28 1758.6 1.27
200 11.2 1047.7 -0.08 0.50 2022.8 1.10
201 10.8 1013.6 -0.45 -0.24 1768.3 0.43
202 10.6 980.7 -0.25 0.35 1890.3 1.24
203 10.2 1063.5 -0.25 0.28 1758.6 1.27
204 9.3 1390.5 0.52 0.07 1589.4 -0.14
205 10.8 1013.6 -0.45 -0.24 1768.3 0.43
206 9.9 1076.4 -0.10 0.19 1748.2 1.70
207 10.2 1063.5 -0.25 0.28 1758.6 1.27
208 11.2 1047.7 -0.08 0.50 2022.8 1.10
209 9.3 1390.5 0.52 0.07 1589.4 -0.14
210 10.6 980.7 -0.25 0.35 1890.3 1.24
211 10.2 1063.5 -0.25 0.28 1758.6 1.27
212 10.8 1013.6 -0.45 -0.24 1768.3 0.43
213 10.2 1063.5 -0.25 0.28 1758.6 1.27
214 11.2 1047.7 -0.08 0.50 2022.8 1.10
215 9.9 1076.4 -0.10 0.19 1748.2 1.70
216 9.6 1072.9 0.21 0.14 1674.8 -0.28
217 10.9 856.3 -0.03 0.55 1974.4 3.07
218 10.3 919.3 -0.25 0.18 1748.3 2.00
219 11.4 836.8 -0.21 0.43 2078.9 1.03
220 10.6 972.1 -0.19 0.05 1828.8 0.43
221 11.2 900.8 -0.46 -0.09 1855.8 0.30
222 10.9 856.3 -0.03 0.55 1974.4 3.07
223 10.6 972.1 -0.19 0.05 1828.8 0.43
224 10.9 856.3 -0.03 0.55 1974.4 3.07
225 11.4 836.8 -0.21 0.43 2078.9 1.03
226 9.6 1072.9 0.21 0.14 1674.8 -0.28
227 10.9 856.3 -0.03 0.55 1974.4 3.07
228 11.2 900.8 -0.46 -0.09 1855.8 0.30
229 10.3 919.3 -0.25 0.18 1748.3 2.00
230 11.4 836.8 -0.21 0.43 2078.9 1.03
231 10.3 919.3 -0.25 0.18 1748.3 2.00
232 10.9 856.3 -0.03 0.55 1974.4 3.07
233 11.2 900.8 -0.46 -0.09 1855.8 0.30
234 9.6 1072.9 0.21 0.14 1674.8 -0.28
235 10.9 856.3 -0.03 0.55 1974.4 3.07
236 10.6 972.1 -0.19 0.05 1828.8 0.43
237 10.9 856.3 -0.03 0.55 1974.4 3.07
238 11.4 836.8 -0.21 0.43 2078.9 1.03
239 10.6 972.1 -0.19 0.05 1828.8 0.43
240 10.9 856.3 -0.03 0.55 1974.4 3.07
241 10.3 919.3 -0.25 0.18 1748.3 2.00
242 11.2 900.8 -0.46 -0.09 1855.8 0.30
243 9.6 1072.9 0.21 0.14 1674.8 -0.28
244 9.6 1072.9 0.21 0.14 1674.8 -0.28
245 10.9 856.3 -0.03 0.55 1974.4 3.07
246 11.2 900.8 -0.46 -0.09 1855.8 0.30
247 10.9 856.3 -0.03 0.55 1974.4 3.07
248 10.3 919.3 -0.25 0.18 1748.3 2.00
249 10.6 972.1 -0.19 0.05 1828.8 0.43
250 11.4 836.8 -0.21 0.43 2078.9 1.03
251 10.6 972.1 -0.19 0.05 1828.8 0.43
252 10.9 856.3 -0.03 0.55 1974.4 3.07
253 10.9 856.3 -0.03 0.55 1974.4 3.07
254 10.3 919.3 -0.25 0.18 1748.3 2.00
255 9.6 1072.9 0.21 0.14 1674.8 -0.28
256 11.2 900.8 -0.46 -0.09 1855.8 0.30
257 11.4 836.8 -0.21 0.43 2078.9 1.03
258 9.6 1072.9 0.21 0.14 1674.8 -0.28
259 11.4 836.8 -0.21 0.43 2078.9 1.03
260 10.3 919.3 -0.25 0.18 1748.3 2.00
261 11.2 900.8 -0.46 -0.09 1855.8 0.30
262 10.9 856.3 -0.03 0.55 1974.4 3.07
263 10.9 856.3 -0.03 0.55 1974.4 3.07
264 10.6 972.1 -0.19 0.05 1828.8 0.43
265 10.9 856.3 -0.03 0.55 1974.4 3.07
266 10.3 919.3 -0.25 0.18 1748.3 2.00
267 9.6 1072.9 0.21 0.14 1674.8 -0.28
268 11.2 900.8 -0.46 -0.09 1855.8 0.30
269 11.4 836.8 -0.21 0.43 2078.9 1.03
270 10.9 856.3 -0.03 0.55 1974.4 3.07
271 10.6 972.1 -0.19 0.05 1828.8 0.43
272 10.6 972.1 -0.19 0.05 1828.8 0.43
273 10.9 856.3 -0.03 0.55 1974.4 3.07
274 9.6 1072.9 0.21 0.14 1674.8 -0.28
275 11.2 900.8 -0.46 -0.09 1855.8 0.30
276 10.3 919.3 -0.25 0.18 1748.3 2.00
277 11.4 836.8 -0.21 0.43 2078.9 1.03
278 10.9 856.3 -0.03 0.55 1974.4 3.07
279 10.9 856.3 -0.03 0.55 1974.4 3.07
280 9.6 1072.9 0.21 0.14 1674.8 -0.28
281 11.2 900.8 -0.46 -0.09 1855.8 0.30
282 11.4 836.8 -0.21 0.43 2078.9 1.03
283 10.9 856.3 -0.03 0.55 1974.4 3.07
284 10.6 972.1 -0.19 0.05 1828.8 0.43
285 10.3 919.3 -0.25 0.18 1748.3 2.00
286 10.9 856.3 -0.03 0.55 1974.4 3.07
287 11.4 836.8 -0.21 0.43 2078.9 1.03
288 10.3 919.3 -0.25 0.18 1748.3 2.00
289 9.6 1072.9 0.21 0.14 1674.8 -0.28
290 11.2 900.8 -0.46 -0.09 1855.8 0.30
291 10.9 856.3 -0.03 0.55 1974.4 3.07
292 10.6 972.1 -0.19 0.05 1828.8 0.43
293 9.6 1072.9 0.21 0.14 1674.8 -0.28
294 11.4 836.8 -0.21 0.43 2078.9 1.03
295 10.3 919.3 -0.25 0.18 1748.3 2.00
296 10.6 972.1 -0.19 0.05 1828.8 0.43
297 10.9 856.3 -0.03 0.55 1974.4 3.07
298 11.2 900.8 -0.46 -0.09 1855.8 0.30
299 10.9 856.3 -0.03 0.55 1974.4 3.07
300 10.9 856.3 -0.03 0.55 1974.4 3.07
301 9.6 1072.9 0.21 0.14 1674.8 -0.28
302 10.6 972.1 -0.19 0.05 1828.8 0.43
303 10.3 919.3 -0.25 0.18 1748.3 2.00
304 11.2 900.8 -0.46 -0.09 1855.8 0.30
305 11.4 836.8 -0.21 0.43 2078.9 1.03
306 10.9 856.3 -0.03 0.55 1974.4 3.07
307 10.9 856.3 -0.03 0.55 1974.4 3.07
308 9.6 1072.9 0.21 0.14 1674.8 -0.28
309 10.9 856.3 -0.03 0.55 1974.4 3.07
310 11.2 900.8 -0.46 -0.09 1855.8 0.30
311 11.4 836.8 -0.21 0.43 2078.9 1.03
312 10.3 919.3 -0.25 0.18 1748.3 2.00
313 10.6 972.1 -0.19 0.05 1828.8 0.43
314 10.6 972.1 -0.19 0.05 1828.8 0.43
315 10.9 856.3 -0.03 0.55 1974.4 3.07
316 11.2 900.8 -0.46 -0.09 1855.8 0.30
317 9.6 1072.9 0.21 0.14 1674.8 -0.28
318 10.3 919.3 -0.25 0.18 1748.3 2.00
319 10.9 856.3 -0.03 0.55 1974.4 3.07
320 11.4 836.8 -0.21 0.43 2078.9 1.03
321 10.6 972.1 -0.19 0.05 1828.8 0.43
322 9.6 1072.9 0.21 0.14 1674.8 -0.28
323 11.4 836.8 -0.21 0.43 2078.9 1.03
324 10.9 856.3 -0.03 0.55 1974.4 3.07
325 11.2 900.8 -0.46 -0.09 1855.8 0.30
326 10.3 919.3 -0.25 0.18 1748.3 2.00
327 10.9 856.3 -0.03 0.55 1974.4 3.07
328 10.3 919.3 -0.25 0.18 1748.3 2.00
329 11.2 900.8 -0.46 -0.09 1855.8 0.30
330 10.9 856.3 -0.03 0.55 1974.4 3.07
331 9.6 1072.9 0.21 0.14 1674.8 -0.28
332 10.9 856.3 -0.03 0.55 1974.4 3.07
333 11.4 836.8 -0.21 0.43 2078.9 1.03
334 10.6 972.1 -0.19 0.05 1828.8 0.43
335 10.3 919.3 -0.25 0.18 1748.3 2.00
336 11.2 900.8 -0.46 -0.09 1855.8 0.30
337 10.9 856.3 -0.03 0.55 1974.4 3.07
338 9.6 1072.9 0.21 0.14 1674.8 -0.28
339 10.6 972.1 -0.19 0.05 1828.8 0.43
340 11.4 836.8 -0.21 0.43 2078.9 1.03
341 10.9 856.3 -0.03 0.55 1974.4 3.07
342 9.6 1072.9 0.21 0.14 1674.8 -0.28
343 10.3 919.3 -0.25 0.18 1748.3 2.00
344 11.2 900.8 -0.46 -0.09 1855.8 0.30
345 10.9 856.3 -0.03 0.55 1974.4 3.07
346 10.6 972.1 -0.19 0.05 1828.8 0.43
347 11.4 836.8 -0.21 0.43 2078.9 1.03
348 10.9 856.3 -0.03 0.55 1974.4 3.07
349 10.6 972.1 -0.19 0.05 1828.8 0.43
350 9.6 1072.9 0.21 0.14 1674.8 -0.28
351 11.2 900.8 -0.46 -0.09 1855.8 0.30
352 10.9 856.3 -0.03 0.55 1974.4 3.07
353 10.3 919.3 -0.25 0.18 1748.3 2.00
354 11.4 836.8 -0.21 0.43 2078.9 1.03
355 10.9 856.3 -0.03 0.55 1974.4 3.07
356 11.2 900.8 -0.46 -0.09 1855.8 0.30
357 10.6 972.1 -0.19 0.05 1828.8 0.43
358 10.3 919.3 -0.25 0.18 1748.3 2.00
359 9.6 1072.9 0.21 0.14 1674.8 -0.28
360 11.4 836.8 -0.21 0.43 2078.9 1.03
361 10.9 856.3 -0.03 0.55 1974.4 3.07
362 10.9 856.3 -0.03 0.55 1974.4 3.07
363 11.2 900.8 -0.46 -0.09 1855.8 0.30
364 10.6 972.1 -0.19 0.05 1828.8 0.43
365 9.6 1072.9 0.21 0.14 1674.8 -0.28
366 10.9 856.3 -0.03 0.55 1974.4 3.07
367 10.3 919.3 -0.25 0.18 1748.3 2.00
368 11.4 836.8 -0.21 0.43 2078.9 1.03
369 10.9 856.3 -0.03 0.55 1974.4 3.07
370 9.6 1072.9 0.21 0.14 1674.8 -0.28
371 10.3 919.3 -0.25 0.18 1748.3 2.00
372 11.2 900.8 -0.46 -0.09 1855.8 0.30
373 11.4 836.8 -0.21 0.43 2078.9 1.03
374 10.6 972.1 -0.19 0.05 1828.8 0.43
375 10.9 856.3 -0.03 0.55 1974.4 3.07
376 10.9 856.3 -0.03 0.55 1974.4 3.07
377 10.9 856.3 -0.03 0.55 1974.4 3.07
378 10.6 972.1 -0.19 0.05 1828.8 0.43
379 11.4 836.8 -0.21 0.43 2078.9 1.03
380 10.3 919.3 -0.25 0.18 1748.3 2.00
381 9.6 1072.9 0.21 0.14 1674.8 -0.28
382 11.2 900.8 -0.46 -0.09 1855.8 0.30
383 10.9 856.3 -0.03 0.55 1974.4 3.07
NA_weather
55 FALSE
56 FALSE
57 FALSE
58 FALSE
59 FALSE
60 FALSE
61 FALSE
62 FALSE
63 FALSE
64 FALSE
65 FALSE
66 FALSE
67 FALSE
68 FALSE
69 FALSE
70 FALSE
71 FALSE
72 FALSE
73 FALSE
74 FALSE
75 FALSE
76 FALSE
77 FALSE
78 FALSE
79 FALSE
80 FALSE
81 FALSE
82 FALSE
83 FALSE
84 FALSE
85 FALSE
86 FALSE
87 FALSE
88 FALSE
89 FALSE
90 FALSE
91 FALSE
92 FALSE
93 FALSE
94 FALSE
95 FALSE
96 FALSE
97 FALSE
98 FALSE
99 FALSE
100 FALSE
101 FALSE
102 FALSE
103 FALSE
104 FALSE
105 FALSE
106 FALSE
107 FALSE
108 FALSE
109 FALSE
110 FALSE
111 FALSE
112 FALSE
113 FALSE
114 FALSE
115 FALSE
116 FALSE
117 FALSE
118 FALSE
119 FALSE
120 FALSE
121 FALSE
122 FALSE
123 FALSE
124 FALSE
125 FALSE
126 FALSE
127 FALSE
128 FALSE
129 FALSE
130 FALSE
131 FALSE
132 FALSE
133 FALSE
134 FALSE
135 FALSE
136 FALSE
137 FALSE
138 FALSE
139 FALSE
140 FALSE
141 FALSE
142 FALSE
143 FALSE
144 FALSE
145 FALSE
146 FALSE
147 FALSE
148 FALSE
149 FALSE
150 FALSE
151 FALSE
152 FALSE
153 FALSE
154 FALSE
155 FALSE
156 FALSE
157 FALSE
158 FALSE
159 FALSE
160 FALSE
161 FALSE
162 FALSE
163 FALSE
164 FALSE
165 FALSE
166 FALSE
167 FALSE
168 FALSE
169 FALSE
170 FALSE
171 FALSE
172 FALSE
173 FALSE
174 FALSE
175 FALSE
176 FALSE
177 FALSE
178 FALSE
179 FALSE
180 FALSE
181 FALSE
182 FALSE
183 FALSE
184 FALSE
185 FALSE
186 FALSE
187 FALSE
188 FALSE
189 FALSE
190 FALSE
191 FALSE
192 FALSE
193 FALSE
194 FALSE
195 FALSE
196 FALSE
197 FALSE
198 FALSE
199 FALSE
200 FALSE
201 FALSE
202 FALSE
203 FALSE
204 FALSE
205 FALSE
206 FALSE
207 FALSE
208 FALSE
209 FALSE
210 FALSE
211 FALSE
212 FALSE
213 FALSE
214 FALSE
215 FALSE
216 FALSE
217 FALSE
218 FALSE
219 FALSE
220 FALSE
221 FALSE
222 FALSE
223 FALSE
224 FALSE
225 FALSE
226 FALSE
227 FALSE
228 FALSE
229 FALSE
230 FALSE
231 FALSE
232 FALSE
233 FALSE
234 FALSE
235 FALSE
236 FALSE
237 FALSE
238 FALSE
239 FALSE
240 FALSE
241 FALSE
242 FALSE
243 FALSE
244 FALSE
245 FALSE
246 FALSE
247 FALSE
248 FALSE
249 FALSE
250 FALSE
251 FALSE
252 FALSE
253 FALSE
254 FALSE
255 FALSE
256 FALSE
257 FALSE
258 FALSE
259 FALSE
260 FALSE
261 FALSE
262 FALSE
263 FALSE
264 FALSE
265 FALSE
266 FALSE
267 FALSE
268 FALSE
269 FALSE
270 FALSE
271 FALSE
272 FALSE
273 FALSE
274 FALSE
275 FALSE
276 FALSE
277 FALSE
278 FALSE
279 FALSE
280 FALSE
281 FALSE
282 FALSE
283 FALSE
284 FALSE
285 FALSE
286 FALSE
287 FALSE
288 FALSE
289 FALSE
290 FALSE
291 FALSE
292 FALSE
293 FALSE
294 FALSE
295 FALSE
296 FALSE
297 FALSE
298 FALSE
299 FALSE
300 FALSE
301 FALSE
302 FALSE
303 FALSE
304 FALSE
305 FALSE
306 FALSE
307 FALSE
308 FALSE
309 FALSE
310 FALSE
311 FALSE
312 FALSE
313 FALSE
314 FALSE
315 FALSE
316 FALSE
317 FALSE
318 FALSE
319 FALSE
320 FALSE
321 FALSE
322 FALSE
323 FALSE
324 FALSE
325 FALSE
326 FALSE
327 FALSE
328 FALSE
329 FALSE
330 FALSE
331 FALSE
332 FALSE
333 FALSE
334 FALSE
335 FALSE
336 FALSE
337 FALSE
338 FALSE
339 FALSE
340 FALSE
341 FALSE
342 FALSE
343 FALSE
344 FALSE
345 FALSE
346 FALSE
347 FALSE
348 FALSE
349 FALSE
350 FALSE
351 FALSE
352 FALSE
353 FALSE
354 FALSE
355 FALSE
356 FALSE
357 FALSE
358 FALSE
359 FALSE
360 FALSE
361 FALSE
362 FALSE
363 FALSE
364 FALSE
365 FALSE
366 FALSE
367 FALSE
368 FALSE
369 FALSE
370 FALSE
371 FALSE
372 FALSE
373 FALSE
374 FALSE
375 FALSE
376 FALSE
377 FALSE
378 FALSE
379 FALSE
380 FALSE
381 FALSE
382 FALSE
383 FALSE
Methods
we used machine learning methods to assess how much information different sets of variables (c.f. P_var_sets
) have each on the dependent variable (Puptake, Y-rel, P-balance), how redundant this information is. The machine learning methods to quantify the predictive power of different variable sets are: i) ordinary least squares (OLS) as a baseline; ii) XGBoost (gradient boosting with tree-based models and hyperparameter tuning for learning rate and tree depth) (arxiv:1603.02754); iii) Random Forests (with default parameters) (doi:10.1023/A:1010933404324). Computations were performed using the mlr3 framework (doi:10.21105/joss.01903). Performance was measured as percentage of explained variance on hold-out data via 5-fold cross-validation, calculated as (1 - MSE/Variance(y)), where MSE represents mean squared error.
We tried adjusting for weather variables but it seems that the ML-methods rather reconstruct the site-specific patterns….